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Chapter 1

Introduction

The increasing demands for the automotive industry to manufacture high
quality, safe, light-weight and environmentally more friendly automo-
biles necessitate the application of new metallic materials such as high-
strength steels, aluminium and magnesium. Aluminium is applied to
inner and outer panels, wheels and heat exchangers, for example. Mag-
nesium finds its application in—amongst other things—transmission cas-
ings, instrument panels, intake manifolds, cylinder head covers and steer-
ing components. Automotive steels are used for space frames and body
panels, for example, and come in a large variety of compositions; from
zinc coated sheets for better corrosion resistance to special alloys for bet-
ter formability of high-strength steels.

The employment of these automotive steels imposes challenging de-
mands on production and joining techniques. Laser welding is a joining
technique that is increasingly being applied in the automotive industry.
It enables innovative techniques such as tailor-made blanks and tubes
which are introduced in order to provide extra strength at only those lo-
cations where it is needed, e.g. near the hinges in car doors. A laser
welded tailor-made blank (LWTB) is a flat assembly of metal sheets of
dissimilar thickness, alloy or surface finish, yielding a new sheet with the
appropriate properties at specific locations.

These tailored blanks and tubes are semi-manufactures that need fur-
ther processing; tailored blanks are pressed into final shapes, e.g. car
body panels, doors and roofs, while tubular blanks are hydro-formed—
for example—into space frame parts. An example of an LWTB is given
in figure 1.1. It shows the outer side body panel of the demonstration
vehicle which is part of the Ultralight Steel Auto Body (ULSAB) pro-
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0.7 mm

0.9 mm

1.3 mm

1.5 mm

1.7 mm

Figure 1.1: Laser welded tailored blank for the ULSAB outer side body panel
(Porsche Engineering Services Inc., 1998). The tailored blank is assembled from
five sheets of dissimilar thickness, ranging from 0.7 mm to 1.7 mm.

gram (International Iron & Steel Institute, 1998). A large group of steel
manufacturers have started the ULSAB program to “demonstrate steel’s ca-
pability to reduce substantially the weight of a vehicle’s body structure and, at
the same time, ensure safety with improved comfort and driving performance, all
at affordable cost”.

The example of figure 1.1 shows that only linear weld seams are used.
In view of subsequent manufacturing steps more optimal solutions may
be found wherein nonlinear seams can be welded, e.g. to obtain a weld
along an iso-strain path. Even more complicated seam geometries are
found for the assembly of parts, e.g. the welding of hydro-formed tubes
into a space frame. Seams are encountered that are along a complex
three-dimensional path in space with a varying orientation.

1.1 Principle of laser welding

The principle of laser welding is to move a focussed laser beam over a
seam. The laser beam is focussed on the material by means of a collection
of optical devices such as lenses and mirrors assembled in a laser welding
head. The laser radiation is absorbed by the metal and due to the high
energy the metal changes locally from a solid state to a liquid state and
a melt pool is formed. Due to the complex flow in the melt pool both
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Figure 1.2: Illustration of the principle of keyhole laser welding.

metals are mixed and during solidification the metals are joined. Two
different laser welding modes are distinguished: conduction mode weld-
ing and keyhole mode welding. In conduction mode welding the metal
is only melted at the surface and the heat is transported into the material
just by heat conduction. In this way, welding seams of a few tenth of a
millimetre deep are formed. In figure 1.2, the keyhole laser welding mode
is illustrated. In keyhole laser welding, the intensity of the laser radiation
is sufficiently high to evaporate the molten metal at the focus of the laser
beam. The recoil pressure of the metal vapour pushes the molten metal
aside in a way so that it creates a capillary, known as the keyhole, which
is filled with metal plasma. The keyhole can extend over the full thick-
ness of the material. Figure 1.2(a) shows that some of the plasma escapes
from the keyhole, forming a plasma plume above the material. The weld-
ing seam is usually protected from a reaction (oxidation) with the air by
means of a shielding gas.

The great advantage of (keyhole) laser welding over conventional
welding is the high welding speed that can be achieved while maintain-
ing full penetration depth. Furthermore, laser welding requires few to
no finish, making it an efficient joining technique. Another advantage of
(keyhole) laser welding is the ability to join components where only one
side is accessible, referred to as overlap welds.

Process windows, see figure 1.3, indicate the laser welding quality
that is achieved when specific combinations of laser power and welding
speed are applied. Too much laser power at low welding speed will result
in excessive heat input and the molten metal may flow out of the seam,
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Figure 1.3: A typical process window for laser welding. The different areas indi-
cate the quality of the weld at a certain combination of laser power and welding
speed.

resulting in a cutting effect. On the other hand, a welding speed which is
too high will result in insufficient heat input which leads to lack of fusion.

The process window illustrated in figure 1.3 shows sharp bound-
aries between the different areas of weld quality. However these bound-
aries are not as sharp as indicated here. Small differences in the pro-
cess conditions—e.g. shielding gas flow, focus position and workpiece
preparation—will influence the boundaries of the process windows. Vari-
ables that influence the laser welding process are, amongst others:

• type of metal alloy,

• surface condition of the metal, e.g. oxidation, protective coatings,

• thickness of the material,

• edge preparation of the metal,

• weld type, e.g. butt weld, overlap weld,

• orientation of the weld,

• welding optics and

• shielding gas.
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Changing one of these variables may give rise to a modified process win-
dow and eventually a process window has to be determined that fits
specifically with the new configuration.

For the welding of linear welds, as in tailor-made blanks, one process
window can be considered along the weld seam as the weld conditions
are more or less invariant. For the welding of complex three-dimensional
products such as space frames, the orientation of the weld constantly
changes along the weld seam. As the process window changes as a func-
tion of the orientation, the welding conditions change as well (Su, 2000).
Hence, the optimal settings of the welding parameters may vary along
the seam.

The required path tracking accuracy is mainly determined by the
working range of the beam; a function of wavelength, diameter of the
unfocused beam, and focal length of the focus lens. As there is a selec-
tion of different focal lengths that may be used, a single set of values for
the path tracking accuracy in either lateral and focal direction does not
exist. In this work a rather demanding example has been chosen. For
laser welding of steel sheets using a diameter of the laser at the focal
point of 0.3 mm and a focal length of 100 mm, it was found (Römer, 2002)
that a lateral tolerance of ±0.1 mm has to be satisfied in order to avoid
weld quality degradation. The requirements for the vertical tolerance are
less strict in general, although for these welds changes in the vertical po-
sition in the order of 0.1 mm give rise to quality changes as well. Hence,
tolerances of ±0.1 mm in both directions will be taken as typical values.

1.2 Robotised laser welding

The manipulation of the laser welding head with respect to the seam is
done with robotic manipulators. For the laser welding of nonlinear seams
in tailored blanks, gantry manipulators are being used, see figure 1.4(a).
Such manipulators have a good dynamic performance as is needed for
such welds. A drawback of such systems is the high investment costs,
which makes them only economically affordable for large product series.
Furthermore, the accessibility of welds in three-dimensional assemblies
is poor for these gantry manipulators. Six-axis robotic manipulators, see
figure 1.4(b), on the other hand, are cheaper and can reach more compli-
cated seams, thus opening a wider range of applications. However, their
accuracy is less, so a tradeoff has to be made between the complexity of
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(a) Five-axis gantry robot. Courtesy
of TRUMPF GmbH + Co. KG.

(b) Six-axis robot arm with a laser welding
head attached.

Figure 1.4: Two typical robot systems for laser welding applications.

the seams and the required weld quality. In this thesis the focus is placed
on the six-axis robotic manipulators and, in particular, a prediction of the
achievable accuracy.

Welding nonlinear seams is not a trivial extension of laser welding
of linear seams. The capabilities of the manipulator used for the weld-
ing task have to be taken into account. The manipulator may have a
limited performance regarding the tracking accuracy of the focal point
of the laser beam with respect to the seam, which should stay within
strict boundaries. In addition, the accessibility of the seam can also be
a problem in complex three-dimensional products. Testing on the real
equipment should be avoided as it is expensive. Hence an investigation
of the ability to weld such nonlinear seams with a robotic manipulator
has to be carried out already during the planning of a laser welding job.

1.3 Off-line programming and dynamic simulation

To include the behaviour of the manipulator in the planning of a laser
welding job, off-line programming (OLP) can be used to determine a pri-
ori the optimal weld trajectory and process settings needed to meet prod-
uct specifications. This OLP should involve a realistic simulation of the
welding process. These simulations must be capable of predicting the
weld quality that will be obtained for a specific material, seam geometry
and manipulator. Knowledge of the process window is an important pre-
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Figure 1.5: Overview of the process of off-line programming, integrated with
realistic dynamic simulations, of a laser welding job.

requisite, e.g. optimal welding speed and laser power combinations and
minimum required welding speed. Furthermore, an accurate simulation
of the motion of the robot or manipulator is needed to investigate the
extent to which performance limitations affect the weld quality.

Figure 1.5 illustrates the work flow of the off-line programming pro-
cess using realistic dynamic simulations of the robot motion. The first
step is to import the workpiece as a 3D-CAD geometry into the off-
line programming system. Then, the geometrical motion paths (welding
seams and intermediate points) are specified at the workpiece. Attributes
such as welding speed and process parameters are assigned by selecting
a proper combination of welding speed and laser power from the process
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window. Furthermore, the motion parameters, e.g. interpolation type, are
set. In this stage it is already possible to take both process and kinematic
limitations into account (Backes, 1999).

If the workpiece programming is finished the question is always
whether or not the program is executable. The selected robot with its
tool (the laser welding head) must conduct the program collision-free,
without leaving the joint travel ranges, without exceeding the joint ve-
locities and joint accelerations in the planned or already existing work
cell. In addition, the problem of accessibility and possible occurrence
of nearly singular robot positions must be addressed. Professional off-
line programming systems, such as TopLas3Dr (Mebitec, 2006), have a
3D simulation section, in which robots, tool, workpiece and working en-
vironment are present. The pre-developed program can be executed in
the 3D simulation directly and examined for collision etc. Problems that
have been detected during the kinematic simulation are indicated along
the trajectory and can be solved by moving trajectory points or changing
orientation, for example. A further possibility is to shift the robot basis
or the location of the workpiece to the robot, until the entire program is
executed successfully.

Keeping in mind the limited dynamic performance of the robotic ma-
nipulator, a second step is proposed in figure 1.5. In this second step,
a realistic dynamic simulation of the laser welding job is performed in
order to check the path tracking accuracy of the robot with the required
path tracking accuracy. If the path tracking accuracy appears to be insuf-
ficient, it is necessary to modify the laser welding job in such a way that
it becomes feasible. This is an iterative process in which welding speed,
orientation and location of the workpiece, etc. are optimised. After the
optimisation, the laser cell can be set up properly and the robot program
is downloaded on the robot and the welding operation can start.

1.4 Objective

The off-line programming process as was outlined in the previous section
includes the step in which a realistic dynamic simulation of the laser
welding job is carried out. Present off-line programming systems do not
include such a feature; they are only capable of kinematic simulations
of the robotic manipulator (Waiboer, 2000). As laser welding is highly
demanding with respect to welding speed and required path tracking
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accuracy, realistic dynamic simulations are needed in the process of off-
line programming in order to a priori detect problems. From these two
facts the following objective has been formulated:

The development of a realistic dynamic simulation model of an industrial
robot in order to support off-line programming of laser welding jobs with a pre-
diction of the dynamic performance of the robot’s motion.

Developing a realistic dynamic simulation model of an industrial
robot involves three major steps:

1. Build a model structure with a set of dynamic equations that de-
scribe the relevant physical phenomena of the industrial robot cor-
rectly.

2. Determine the model parameters, either from manufacturers data
or by means of model identification techniques.

3. Validate the dynamic robot model by means of performing several
typical motion experiments with both the real robot and the model.

In this thesis, these three steps will be carried out for a Stäubli RX90B
industrial robot.

1.5 Contributions

The modelling and identification of industrial robots has already been
covered extensively in literature as will become clear in the next chapters.
In this thesis several contributions have been made to this subject which
can be summarised as follows:

• The modelling of joint friction with commonly used so-called classic
friction models is evaluated. It will be shown that these models are
not able to describe joint friction accurately. A new friction model
is developed that relies on insights from sophisticated tribological
models. The new friction model accurately describes the friction be-
haviour in the sliding regime with a minimal and physically sound
parametrisation.

• This thesis shows the application of a finite element representation
for the modelling of the robot arm. The equations of motion are
determined in terms of the joint degrees of freedom (Lagrange for-
mulation).
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• The parameter identification method commonly used in robotics is
reconsidered and the model parameters are compared with manu-
facturer’s data. By means of a singular value analysis and a scaling
operation, the identifiability of the model parameters is discussed.
Additionally, a method is presented which enables verification of
an identified reduced parameter set with a full set of model param-
eters, for instance manufacturer’s data.

• Finally, closed-loop dynamic simulations are carried out with the
identified robot model. A perturbation method is applied which
makes the simulations significantly more time efficient. A series
of motion experiments is done both with the actual robot and the
simulation model. Motion experiments clearly show the ability to a
priori detect welding defects as a result of path tracking errors. Fur-
thermore, they illustrate typical difficulties that arise in robotised
laser welding.

1.6 Outline of the thesis

In chapter 2 the general layout of the Stäubli RX90B robot is discussed.
It includes the description of the robot controller and the driving sys-
tem. Chapter 3 discusses the modelling and parameter identification of
the friction torques that arise in the robot joints. The application of phe-
nomenological friction models for the modelling of friction in the sliding
regime will be evaluated. Furthermore, a new friction model will be
developed that relies on insights from tribological models. The friction
model is then incorporated into a so-called pre-sliding model in order
to sufficiently describe friction torques at zero velocity and at velocity
reversals.

The modelling and identification of the inertia properties of the
robotic arm will be covered in chapter 4. First, the nonlinear finite el-
ement formulation will be introduced. This formulation is used to derive
the dynamic model of the robot. Secondly, the dynamic model of the
robot is written in a parameter linear form so that linear regression tech-
niques can be applied to identify the unknown model parameters. Then
the identification technique will be discussed, including the experimental
design. Finally, the unknown inertia parameters of the robot will be iden-
tified. The identified parameters are validated experimentally and they
are compared with manufacturer’s data.
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In chapter 5, the models of the robot subsystems that were derived in
the first chapters are assembled into a complete model of the closed-loop
robot system. A perturbation method will be introduced in order to im-
prove the computational efficiency of the dynamic simulations. With both
the nonlinear and the perturbation models, motion experiments will be
carried out. The simulation results are then validated by means of mea-
surements done on the actual robot while performing the motion exper-
iments. Subsequently, the applicability of realistic dynamic simulations
for off-line programming will be demonstrated by means of motion ex-
periments regarding typical laser welding trajectories. Finally, concluding
remarks and recommendations for future research are given in chapter 6.
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Chapter 2

The Stäubli RX90B robot

2.1 Robot system overview

The Stäubli RX90B industrial robot, illustrated in figure 2.1, is a so-called
robotic manipulator which bears a strong resemblance to the human arm.
The robotic arm, an articulated mechanical structure, is an assembly of
links interconnected by joints. The base and joints 1 and 2 form the shoul-
der of the robot. Joint 3 is the elbow and joint 4 attaches the forearm.
Joints 5 and 6 make up the robot wrist.

The role of the articulated structure is to move and/or manipulate
the end-effector which is attached at the end of the wrist, at link 6. The
end-effector may be a gripper device intended to manipulate objects. In
this thesis, the end-effector is the laser welding head which was shown in
figure 1.4(b), page 6.

A general overview of the robotic system hierarchy is shown in fig-
ure 2.2. The robotic system is divided into six layers. Starting at the
first and bottom layer, there is the mechanical manipulator arm, which
consists of stiff and lightweight aluminium robot links that are intercon-
nected by means of six revolute joints. The manipulator arm also includes
a gravity compensating spring, mounted inside link 2, which balances the
unloaded arm. The first 4 joints are equipped with the so-called Stäubli
Combined Joints (JCS), which contain both the joint transmission and the
joint bearing assembly. The remaining two joints of the wrist assembly
are coupled due to the fact that the motors for joint 5 and 6 are both
mounted inside link 4 and the fact that joint 6 is driven via joint 5. The
driving system will be discussed in detail in section 2.4.
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Figure 2.1: The Stäubli RX90B six-axis RRR-RRR industrial robot. Courtesy of
Stäubli, Faverges, France.

The second layer involves the three-phase servo motors that drive the
joints via dedicated transmissions. Resolvers on the motor axis measure
its position and velocity. The types of actuators determines the maximum
amount of power that can be supplied to the robot joints. The resolution
of the resolvers determine the theoretical upper bound for the robot’s
accuracy.

The third layer provides the electronic interfaces. It contains the six
integrated servo amplifiers that drive the servo motors. Furthermore, it
provides the hardware for the robot’s safety system, such as emergency
stops and power supply of servo amplifiers, including the motor brakes.

The fourth layer encompasses the motion control. Although the mo-
tion control is integrated within the servo amplifier hardware, it is con-
sidered a separate layer. These servo amplifiers are equipped with a DSP
(Digital Signal Processor) on which a SISO (Single Input, Single Output)
motion control algorithm is running. The control algorithm will be dis-
cussed in section 2.3. The interface to the fifth layer is provided by a ded-
icated SERCOS bus (SERCOS, 1998). The SERCOS interface is an open
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Figure 2.2: General system overview of the Stäubli RX90B robot.

interface specification for the communication between a master controller
and intelligent digital servo drives and is based on an optical ring topol-
ogy with a time-triggered master-slave communication.

The fifth layer involves the robot’s kinematic and inverse kinematic
models and the motion generator. It provides the joint set-points to the
fourth layer via the SERCOS bus. Finally, the sixth and top layer provides
the supervisory control of the robot. It governs the task planning and it
provides interfaces to the operator and programmer. Furthermore, it can
interface via ethernet and/or field busses with external devices, such as
sensors, laser sources and analogue or digital inputs and outputs.

The fifth and sixth layers are implemented within software which runs
on an industrial PC equipped with the VxWorks operating system (Wind-
River, 2004). A SERCOS master controller card provides the communica-
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Figure 2.3: Block diagram of the closed-loop robot model.

tion between the PC and the SERCOS bus. A teach pendant is connected
to the industrial PC and functions as the main interface between the op-
erator and the system controller.

2.2 Overview of the closed-loop robot model

For the dynamic modelling of the robot system, only the layers 1 through
5 will be considered and the supervisory control of the robot will not be
included in the robot model. The block diagram of the closed-loop robot
system that will be modelled is shown in figure 2.3.

The input of the block diagram is the reference trajectory x(r)(t). With
the inverse kinematic model, the values of the joint angles as a function
of the desired tip position and orientation are computed. In this case the
transformations of the joint axes to the motor axes are also included in
the inverse kinematic model in such a way that the motor positions ϕ(r)

become the output of the block.

Note that the inverse kinematic model of the Stäubli RX90B generally
has eight different solutions, yielding eight different robot poses. Fur-
thermore, there are reference points x(r) for which the inverse kinematic
solution has an infinite number of solutions. These points are known as
singular positions. An example of a singular position is the case wherein
the angular position of axis 5 equals zero resulting in joint 4 and joint
6 being aligned. The inverse kinematic solution then includes any value
q6 = −q4 ∈ R. For further reading on inverse kinematics the reader is
referred to e.g. Khalil and Dombre (2002).

The next block is the motion controller block, which governs the mo-
tion of the servo motors by measuring their position ϕ and velocity ϕ̇

and by regulating the output current i(m). The motion controller will be
discussed in section 2.3.

The third block encompasses the joint driving system. The servo mo-

tors mounted inside the drives convert the electrical current i(m) to a me-
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Figure 2.4: Block diagram of the motion controller for a single servo.

chanical motor torque. The motor torques are transformed to joint torques
T by the joint transmissions. Inversely, the joint angles q and their time
derivatives are transformed into motor angles and their time derivatives.
The driving system will be discussed in section 2.4.

The final block is the block denoted by robot arm. This block encom-
passes the forward dynamic model of the robot arm. It computes the
motion of the robot arm as a function of the joint torques T . The motion
of the robot arm is expressed in terms of a set of generalised degrees of
freedom q, being the six joint angles, and their time derivatives q̇ and q̈.
The modelling of the robot arm will be discussed extensively in chapter 4.

The robot arm block also includes the kinematic model of the robot
that computes the actual Cartesian position and orientation, and time
derivatives, of the robot tip (x(E), ẋ(E)) as a function of the joint positions
q and velocities q̇.

2.3 The motion controller

The Stäubli robot is equipped with so-called independent PID feedback
controllers. The term independent refers to the fact that every servo mo-
tor is equipped with a Single Input Single Output (SISO) controller. The
controllers are implemented in customised digital amplifiers/controllers
of the type “ServoStar”, manufactured by Kollmorgen (2004a). In fig-
ure 2.4, the block scheme of a single motion controller is depicted.

The inputs of the motion controller are the motor reference position
ϕ(r) and velocity ϕ̇(r), which are presented at a rate of 250 Hz via the
SERCOS bus. A so-called micro-interpolator interpolates the reference
position and velocity commands by means of a cubic polynomial. The
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Figure 2.5: Block diagrams of the position loop and the acceleration and velocity
feed forwards of the motion controller.

output position, velocity and acceleration (ϕ(i), ϕ̇(i), ϕ̈(i)) are computed at
a rate of 2 kHz.

The interpolated reference position ϕ(i) is compared to the actual mo-
tor position ϕ, and the difference is the position error ǫ. The position error
is the input of the PID controller block, illustrated in figure 2.5(a). The
proportional control action (P) is obtained by multiplying the position
error ǫ with the proportional gain kp, yielding a motor torque which is
proportional to the position error. An integrating action, denoted by I, is
introduced in the controller to reduce the steady–state position error that
is caused by joint friction. The position error is integrated by the

∫
-block

and multiplied with the integrator gain ki, yielding the motor torque of
the I-action.

In order to provide stability, a damping term D can be added to the
P-controller, where the time derivative ǫ̇ of the position error is numeri-
cally derived by the d/dt-block. Multiplication with the derivative gain kd

yields the motor torque associated with the D-action. For motion control,
however, the numerical derivation of the error velocity is not preferable
as it generally yields high frequency noise on the velocity signal. Since
the servo motors are equipped with resolvers, a high quality velocity sig-
nal is available. This velocity signal will be used to provide the damping
action in a separate velocity loop. Consequently, the PID controller is
configured as PI controller by setting the derivative gain to zero, kd = 0.
The resulting PI position loop is running at 2 kHz. The velocity loop is
added to the motion controller as depicted in figure 2.4. The velocity loop
is built up with three filters; an input filter Gin, a velocity feedback filter
Gfb and an output filter Gout. The velocity loop is running at 4 kHz.

In order to improve the trajectory tracking performance of the con-
troller, a feed-forward block is added to the controller. The velocity ϕ̇(i)



2.4. The driving system 19

and acceleration ϕ̈(i), which have been computed by the micro interpo-
lator, are fed into the feed-forward block, see figure 2.5(b). Multiplying
the acceleration ϕ̈(i) with the constant gain kaf provides a feed–forward
torque which is proportional to the motor torque required for the accel-
eration of the specific motor and load. Observe that a feed forward error
is introduced because the acceleration feed–forward gain kaf is constant,
while the inertial load changes with the robot’s configuration. The ac-
celeration feed-forward can either be fed to the current output via the
low-pass filter Gff by setting kafc, or be fed to the input of the velocity
loop by setting kafv. Multiplying the velocity ϕ̇(i) with a gain kvf provides
a torque signal that is applied for compensation of the viscous friction
torque generated inside the robot joints.

The output of the velocity loop, the current signal i(m), is the input
for the current control loop which provides both the power amplification
and the commutation; it computes the three-phase currents needed for
the servos as a function of both the angular position of the rotor and
the sign of the requested current i(m). In the model, the commutation
is omitted and the three-phase currents are replaced by the equivalent
current i(m). Furthermore, it is assumed that the current loop behaves as
an ideal amplifier with unity gain.

The controller model has been derived from the Servostar documen-
tation (Kollmorgen, 2004c,b) and with the support of the Stäubli factory.
In those instances wherein the documentation was unclear concerning
the exact locations of a filter or the occurrence of quantisation, for exam-
ple, assumptions have been made regarding these aspects. The controller
model has been verified by means of system identification tools. The
ultimate verification of the closed-loop behaviour of the dynamic robot
model will be performed in chapter 5.

2.4 The driving system

The layout of the driving system of the Stäubli robot is illustrated in fig-
ure 2.6. For each of the first four joints of the Stäubli robot, figure 2.6(a)
is a schematic representation of the JCS (Stäubli Combined Joint), which
is a sophisticated assembly that includes both a cycloidal transmission
and the joint bearing support (Gerat, 1994). The cycloidal transmission
is driven by a servo motor via a helical gear pair. The last two joints in
the robot’s wrist, see figure 2.6(b), are driven via a worm and wheel gear
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Figure 2.6: Layout of the driving system of the Stäubli RX90B robot.

(Gerat and Palau, 1998). Furthermore, joint six includes a (spiral) bevel
gear pair.

The servo motors are brushless three-phase servo motors. In this the-
sis, the three-phase currents are replaced by one equivalent DC current
for simplification. The motor constant is assumed to be fixed, while in
reality it may vary as a function of the angular velocity. This is caused
by the fact that the servo behaves as a low pass filter for the three-phase
currents. Here it is assumed that this effect will arise only at very high
angular velocities, close to the velocity limits of the joints. The servo mo-
tor transfers the electrical current ij into a torque delivered at the motor
axis:

T (ϕ)
j = i

(m)
j k

(m)
j − J

(m)
j ϕ̈j , (2.1)

where k
(m)
j is the motor constant and J

(m)
j is the rotor inertia. Note that the

rotor inertia J
(m)
j also includes part of the rotational inertia of the gears.

The motor axis angular position is denoted by ϕj. From equation (2.1) it
is clear that the acceleration of the rotor inertia is already accounted for

in the computation of the motor torque T (ϕ)
j .

The relations between the vector of motor axis positions ϕ and joint
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Figure 2.7: Block diagram of the driving system.

positions q and their time derivatives are given as:

ϕ = Tq , (2.2a)

ϕ̇ = Tq̇ , (2.2b)

ϕ̈ = Tq̈ , (2.2c)

where the matrix T contains the gear ratios and is defined as:

T =
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. (2.3)

It is assumed that the transmission is ideal, i.e. T is constant and no
backlash or other nonlinear behaviour is present. Furthermore, all losses

due to friction are gathered in a single vector T
( f ) of joint friction torques.

The input–output equation of the complete drive system is then

TT(K(m)i(m) − J(m)ϕ̈) − T
( f ) = T , (2.4)

where K(m) = diag(k
(m)
1 , k

(m)
2 , . . . , k

(m)
6 ) is a matrix with the motor con-

stants on its diagonal and J(m) = diag(J
(m)
1 , J

(m)
2 , . . . , J

(m)
6 ) is a diagonal

matrix with the motor rotor inertias. The vector of output joint torques is
defined as T . Rearranging and substitution of equation (2.2c) yields

T
(m) − T TJ(m)T q̈ − T

( f ) = T , (2.5)

where
T

(m) = T TK(m)i(m) (2.6)

is defined as the vector of motor torques.
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2.5 Discussion

In this chapter, the Stäubli RX90B industrial robot was introduced. Its
main elements, the robot arm, the driving system including friction and
the robot controller were pointed out. The general robot set-up was dis-
cussed first. Then, the control system was explained. Finally, the driving
system was presented and the joint friction torques were separated from
the driving model.

Note that several modelling assumptions have been made in this chap-
ter; the transmission is assumed to be ideal and the joint friction torques
are assumed to be single friction torques acting on the robot joints. Con-
sequently, it needs to be verified and validated whether or not these as-
sumptions are justified. This will become clear in three steps:

1. In chapter 3, joint friction modelling and identification will be dis-
cussed. This will be the first opportunity to test if it is correct to
include joint friction as single friction torques acting on the robot
joints.

2. The second test will be the identification of the robot arm. Since the
joint torques can only be measured indirectly via the motor currents,
it is required that the models of the drives and joint friction are
included accurately. This will be discussed in chapter 4, where the
modelling and identification of the robot arm is discussed.

3. The final test will be carried out in chapter 5, where typical
robot trajectory motions are simulated using the complete dynamic
closed-loop robot model. The verification of the simulation results
by means of measurements on the robot will then demonstrate
whether or not the modelling assumptions were justified and if the
dynamic model can predict the trajectory tracking capabilities of the
robot for specific laser welding jobs with sufficient accuracy.
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Joint friction

3.1 Introduction

Robotic manipulators are subject to joint friction which arises in the bear-
ings, transmissions and seals, in other words at every point where two
surfaces are in relative motion and in contact. Numerous factors, such as
surface roughness and topology, lubricant viscosity, load, (local) temper-
ature and velocity influence the friction forces at the contacting surfaces.
In order to gain an understanding of friction in the six joints of the Stäubli
RX90B robot, a closer look is taken at the joint construction and the con-
tacts between the components.

The first four joints of the Stäubli RX90B robot, see figure 3.1(a), are
equipped with a so-called JCS (Stäubli Combined Joint), which is a so-
phisticated assembly that includes both a cycloidal transmission and the
joint bearing support (Gerat, 1994). The cycloidal transmission is driven
by a servo motor via a helical gear pair. The gears and bearings in the
cycloidal transmission are prestressed in order to eliminate any backlash.
Both the cycloidal transmission and the helical gear pair are constantly
lubricated in order to reduce friction losses and to minimise wear. The
remaining two joints in the robot’s wrist, see figure 3.1(b), are driven via
a worm and wheel gear (Gerat and Palau, 1998). Furthermore, joint six
includes a (spiral) bevel gear pair.

Accurate modelling of the friction behaviour of the robot joints re-
quires that the friction model is based on the physics of friction. The
science of the physics of friction is known as tribology. Documented tri-
bology research dates back to the work of Leonardo da Vinci (1452-1519).
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Figure 3.1: Schematic overview of the components in the robot drives that are
subject to friction.

The engaging work of Dowson (1998), entitled “History of Tribology”,
illuminates the 3000-year history of man’s attempts to understand and
modify friction. Today, tribology research is largely focussed on the is-
sues of wear and machine life on one hand, and on surface chemistry
and physics on the other. However, for the control of machines the main
interest in friction phenomena lies in the field of frictional dynamics; the
way in which friction influences the dynamic behaviour of the machine.
A comprehensive survey paper by Armstrong-Hélouvry et al. (1994) dis-
cusses the studies carried out in the field of frictional dynamics during
the past few decades.

In this thesis, the focus will be on the friction characteristics of the
main components in the robot’s joints and transmissions: bearings and
gears. In friction research applied to robotics, it is common to distinguish
between the so-called sliding regime and the pre-sliding regime. In the
sliding regime, the friction forces that arise at nonzero surface velocities
are studied. In the pre-sliding regime, friction forces are evaluated for
states where the surface velocities are zero or close to zero.

Joint friction in both the sliding and the pre-sliding regimes is quite
important for dynamic robot modelling employed for laser welding; due
to the nonlinear kinematic nature of the robot, straightforward welding
trajectories may require fast motions and rapid reversals of the robot’s
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axes velocity. The velocities at which the axes operate is roughly in be-
tween −4 rad/s and 4 rad/s. Taking into account that the transmission ra-
tio is of the order of 100, the velocity of the servo axis may reach 400 rad/s.
Furthermore, during a reversal of the joint velocity, the pre-sliding regime
is applied. Consequently, a friction model has to be able to describe both
regimes with sufficient accuracy with respect to the dynamic modelling
and identification of the complete robot.

Commonly, friction modelling in tribology is based mainly on phys-
ical principles; friction phenomena are often observed at the level of a
single sliding or rolling surface contact. The model parameters are then
directly related to the physical properties of the surfaces and the applied
lubricant. A friction model of a complete system, such as a roller bearing
or gear pair, evaluates the friction forces at every single contact and—
since there are many contacts—this generally yields elaborate friction
models that are computationally very expensive (Spikes, 2001).

Therefore, many authors have developed phenomenological friction
models that describe the essential friction phenomena arising in servo-
controlled mechanical systems. Olsson et al. (1998) have given an elab-
orate overview of—mostly phenomenological—friction models known in
control systems literature. Model parameters for these phenomenological
models generally do not have a direct relation with the physical proper-
ties of the contacts in the system at which the friction forces arise.

Outline

In this chapter, the modelling and identification of joint friction will be
discussed. The focus is on the sliding regime, initially. First, in sec-
tion 3.2, the applicability of phenomenological friction models that are
commonly used in control literature is investigated. A brief overview
is given of the phenomena that are covered by these phenomenological
models. Based on the overview, a phenomenological joint friction model
will be formulated. Subsequently, the model parameters are obtained by
means of experiments. It will be shown that the phenomenological mod-
els are inadequate to describe the friction behaviour for the full velocity
range with sufficient accuracy.

A new joint friction model will be proposed that relies on insights
from sophisticated tribological models. The basic friction model of two
lubricated discs in a rolling-sliding contact is used to analyse viscous
friction and friction caused by asperity contacts inside gears and roller
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bearings of robot joints and drives. The sub-models that describe vis-
cous friction and friction due to asperity contacts are combined into two
friction models: one for gears and one for prestressed roller bearings.
The development of these friction models is covered in sections 3.3 to 3.5.
In this way a new friction model is developed that accurately describes
the friction behaviour observed in the Stäubli RX90B robot. Next, in sec-
tion 3.6, the joint friction model parameters will be identified by means
of experiments. It will be shown in section 3.7 that the model is linear
in parameters that depend on the temperature of the robot drives, which
makes it very suitable to include the friction model in the identification
experiments carried out for obtaining the inertia parameters. Finally, in
section 3.8, the model is extended in such a way that it can describe the
joint friction behaviour in the pre-sliding regime during reversals of the
joint velocity.

3.2 Friction modelling at system level

3.2.1 Classic friction models

Most (phenomenological) friction models in control literature are combi-
nations of the classic friction models, see figure 3.2. Friction normally is
described as the product of a coefficient of friction and a normal force.
For modelling of friction in robots with revolute joints, friction is mostly
considered to be load independent. Therefore, friction is usually mod-

elled as a joint torque T ( f )
j that is a function of its angular joint velocity

q̇j. The subscript j denotes the joint number.
The model that is shown in figure 3.2(a) is known as the Coulomb

friction model. The Coulomb friction model is given as

T ( f ) = sign(q̇) T ( f ,C) , (3.1)

where T ( f ,C) is the Coulomb friction torque and q̇ is the angular velocity.
The Coulomb friction model originates from the friction between sliding
dry surfaces which generally produce large friction forces. Note that
sign(q̇) is not defined for zero velocities. This means that the model is
not able to describe the friction torque for a velocity equal to zero.

The application of a lubricant results in the addition of a viscous term
in the friction model

T ( f ) = sign(q̇) T ( f ,C) + c(v)q̇ , (3.2)
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Figure 3.2: Classic friction models.

where c(v) is the viscous friction parameter. Viscous friction is taken
in this model as a linear function of the angular joint velocity, see fig-
ure 3.2(b).

The Swiss scientist Euler (1707-1783) found that a higher force was
needed to bring the surfaces in a sliding motion than is needed to keep
the surfaces in motion, see figure 3.2(c). This so-called static friction effect
is taken into account as

T ( f ) =

{

|T ( f )| ≤ T ( f ,s) if q̇ = 0 ,

sign(q̇) T ( f ,C) + c(v)q̇ if q̇ 6= 0 ,
(3.3)

where T ( f ,s) is the static friction torque and T ( f ,C) < T ( f ,s). Note that
this model gives a non-unique solution for the friction torque for zero
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velocities and that it shows discontinuous behaviour in a transition from
zero velocity to nonzero velocity.

Stribeck (1902) discovered that the drop from static friction to
Coulomb friction is not discontinuous for lubricated surfaces but that it
is a continuous function of the velocity (Jacobson, 2003), see figure 3.2(d).
Therefore, the graph representing the relationship between friction and
velocity will hereafter be referred to as the Stribeck curve. Bo and Pave-
lescu (1982) developed a well-known model describing the Stribeck effect,
which displays an exponentially decrease from the static friction to the
Coulomb friction:

T ( f ) = sign(q̇)

(

T ( f ,C) + (T ( f ,s) − T ( f ,C))e−|q̇/q̇(s)|δ(s))

, (3.4)

where q̇(s) is known as the Stribeck velocity, which indicates the velocity
range in which the Stribeck effect occurs. According to Bo and Pave-
lescu (1982) the empirical exponent δ(s) ranges from 0.5 to 1 for different
material combinations.

Armstrong-Hélouvry (1991) adopted this Stribeck model and added
the viscous term c(v)q̇:

T ( f ) = sign(q̇)

(

T ( f ,C) + (T ( f ,s) − T ( f ,C))e−|q̇/q̇(s)|δ(s))

+ c(v)q̇ . (3.5)

This friction model has been applied by many authors, e.g. Canudas De
Wit et al. (1995); Olsson et al. (1998); Swevers et al. (2000); Hensen et al.
(2002), for the modelling of sliding friction in robotic systems. Conse-
quently, it is logical to investigate the applicability of this model to the
modelling of joint friction in the Stäubli RX90B robot. In order to use the
model, the values of the five unknown parameters, T ( f ,C), T ( f ,s), q̇(s), δ(s)

and c(v), need to be determined experimentally for each joint.

3.2.2 Stribeck curve measurement

In order to evaluate the applicability of the friction model presented in
equation (3.5), Stribeck curve measurements of the friction behaviour of
the first joint of the Stäubli RX90B are carried out. The robot’s first
joint is moved with a trapezoidal velocity profile at different velocities.
Experimentally, it appears that the friction torque also depends on the
temperature of the joints and the joint angle, for example. To have an
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Figure 3.3: Stribeck curve for joint 1, where the dots (•) denote the velocities at
which the measurements were carried out. Note the nonlinear viscous behaviour
at high velocity. Model 1 ( ) is estimated in the full range whereas model 2

( ) is estimated in the range from 0 to 0.5 rad/s.

identical temperature during the experiments an initial warmup motion
is executed before the actual measurements are done. The influence of
the position and noise are minimised by averaging the measured joint
torques during the constant velocity part of a trapezoidal velocity profile.
The joint torques are plotted as a function of the joint velocity q̇, see fig-
ures 3.3. The joint torque is normalised with the maximum joint torque.
The Stribeck effect is clearly visible in the detailed figure 3.3(b). Note that
the Stribeck velocity parameter q̇(s) does not necessarily coincide with the
joint velocity where the friction torque has its minimum.

The friction model is a nonlinear function of two of the unknown pa-
rameters, namely q̇(s) and δ(s). In order to estimate all five parameters
at once, one has to rely on nonlinear optimisation techniques. It is com-
monly known that nonlinear optimisation techniques may lead to local
optima in which non-physical parameter values are found. nonlinear op-
timisation techniques can be applied successfully in cases wherein the
model agrees with the observed behaviour combined with a proper first
estimate of the parameter values.

To prevent difficulties with nonlinear estimation techniques, a linear
least squares optimisation technique is used to obtain the values for pa-
rameters T ( f ,C), T ( f ,s) and c(v) which are linear in the model. Values for
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the parameters q̇(s) and δ(s) are selected manually and are assumed to
be constant. Using this method, the parameters are identified in three
steps. In the first step, the parameters for the Stribeck effect q̇(s) and δ(s)

are given a reasonable value. In step two, the remaining model parame-

ters p( f ) =
[

T ( f ,s) T ( f ,C) c(v)
]T

are estimated with a linear least square

optimisation, which implies minimising the ℓ2-norm

p̂( f ) = arg min
p( f )

∥
∥
∥T

( f ) − A( f )p( f )
∥
∥
∥

2

2
, (3.6)

where T
( f ) =

[

T ( f )
1 · · · T ( f )

n

]T
is the vector of measured friction

torques and matrix A( f ) is defined as

A( f ) =








e−|q̇1/q̇(s)|δ(s)

1 − e−|q̇1/q̇(s)|δ(s)

q̇1
...

...
...

e−|q̇n/q̇(s)|δ(s)

1 − e−|q̇n/q̇(s)|δ(s)

q̇n








, (3.7)

for n measured velocity values. The least squares estimates p̂( f ) from
equation (3.6) can be found by setting the partial derivative of the right
hand side with respect to p( f ) at zero, which yields the so-called normal
equations:

A( f )T
(A( f ) p̂( f ) − T

( f )) = 0 . (3.8)

Solving the normal equations leads to

p̂( f ) = (A( f )T
A( f ))−1A( f )T

T
( f ) . (3.9)

Note that (A( f )T
A( f ))−1 only exists if A( f ) has full rank, which is the

case for the optimisation problem at hand. Solving linear least squares
problems will be discussed in detail in section 4.3.

The last and third step is to fine-tune the manually chosen values for
δ(s) and q̇(s). This is an iterative process wherein the chosen values are
changed slightly before the second step is repeated. By inspection of the
fit between the modelled Stribeck curve and the measured Stribeck curve
the values δ(s) = 0.33 and q̇(s) = 0.024 rad/s are obtained.

Using this technique, two different parameter sets are estimated; one
for the full range from 0 to 4 rad/s and one for a low velocity range
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from 0 to 0.5 rad/s. As can be observed from figure 3.3(a), models 1 and
2 show different behaviour for the low velocities (below 0.5 rad/s) and
high velocities (above 0.5 rad/s) range.

Model 1 is estimated for the full velocity range and shows better per-
formance at higher velocities. The low velocity behaviour is clearly not
modelled correctly, because a value for the static friction torque has been
found which is lower than the value for the Coulomb friction. This is
caused by the fact that, for higher velocities, a lower viscous friction pa-
rameter shows a better fit. The mismatch for the viscous friction at low
velocity is compensated by a negative Stribeck effect.

Model 2, on the other hand, proves to be quite accurate for the low ve-
locity range and the Stribeck effect is described accurately. However, the
extrapolation into the high velocity range is now poor. It appears that lin-
ear viscous behaviour of the model in equation (3.5) does not correspond
with the actual viscous behaviour of the robot joint.

From the fact that a poor fit is obtained, it can be concluded that the
model is not capable of describing friction phenomena for the full velocity
range in the sliding regime. The friction model can be improved ad hoc by
including additional (nonlinear) terms with extra parameters (Grotjahn,
2003). However, the physical meaning of such modifications is unclear.
Furthermore, an increase in the number of model parameters does not
necessarily improve the consistency of the parameter fit and may lead to
over-fit.

Experiments have shown that the magnitude of the friction torque
significantly changes due to temperature variations on the robot joints.
Therefore, it is essential that the temperature dependent friction parame-
ters are also included in the parameter set of the identification procedure
for the inertia parameters, see chapter 4. With this in mind, the friction
model needs to be able to accurately describe the actual friction behaviour
of the robot joints. An incorrect friction model will lead to friction mod-
elling errors which then give rise to large errors in the inertia parameter
estimation. Furthermore, it is desired that the friction model is parame-
terised in such a way that it is physically sound and that it has a minimal
number of parameters.

Lubricated bearings and gears in the robot joints are accompanied by
rolling–sliding contacts between many surfaces. Therefore, a new friction
model will be developed in the remainder of this chapter that is based
on an analysis of the physical behaviour of two lubricated surfaces in a
rolling-sliding contact.



32 Chapter 3. Joint friction

disc 1

disc 2

lubricant

u1

u2

h

f ( f )

(a)

u1

u2

s = const.
(Stribeck curve)

u(+) = const.
(Traction curve)

O

u(−)

u(+)

(b)

Figure 3.4: Two lubricated discs in a rolling–sliding contact (a) and the velocity
diagram (b) in which the velocity state (•) of a lubricated contact can be indicated
(Gelinck, 1999).

3.3 Friction modelling at contact level

In this section, the friction phenomena of a single lubricated contact are
studied. On system level, the friction is accounted for as a torque T ( f ).
On contact level, it is more convenient to consider friction as a force f ( f ).
Analogously, the surface velocity u is considered instead of the joint ve-
locity q̇.

The main components of a robot joint are bearings and gears. In tri-
bology, friction inside gears and bearings is often represented by two lu-
bricated discs in a rolling–sliding contact (Dowson and Higginson, 1977;
Bhushan, 1999). The motivation for this representation is that friction in
both the roller–raceway contact in roller bearings and the contact between
two teeth in a helical or spur gear wheel pair may be represented by the
friction behaviour of two lubricated discs in a rolling-sliding contact.

3.3.1 Two lubricated discs in a rolling–sliding contact

In figure 3.4(a), an illustration of two lubricated discs in a rolling–sliding
contact is given. The friction force between both discs is defined as f ( f ).
The surface velocities of both discs are defined as u1 and u2, respectively.
The velocity state of the lubricated contact can be expressed as a function
of these surface velocities. It is, however, more convenient to express the
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velocity state of the contact as a function of the sliding velocity and the
sum velocity, see the velocity diagram in figure 3.4(b). The sliding velocity
is the difference between both velocities

u(−) = u1 − u2 (3.10)

and the sum velocity u(+) is defined as

u(+) = u1 + u2 . (3.11)

Another frequently used quantity to express the velocity state is the slip
ratio s, which is defined as the ratio between the sum and the sliding
velocity

s =
u(−)

u(+)
. (3.12)

With these definitions, three typical situations for the velocity state
can be distinguished:

i. Perfect rolling. Both velocities, u1 and u2, are equal in magnitude
and direction. Then the sliding velocity u(−) equals zero and, con-
sequently, there is zero slip. This velocity state is indicated by the
u(+)–line.

ii. Full sliding. Both velocities, u1 and u2, are equal in magnitude
and opposite in direction. Then the sum velocity u(+) equals zero,
resulting in infinite slip. This velocity state is indicated by the u(−)–
line.

iii. Constant slip. The ratio s between the sum and sliding velocity
remains constant. This velocity state is indicated by the dashed line
in figure 3.4(b), for example. In fact, it may be any line that crosses
the origin O.

Next, the friction behaviour will be considered in terms of the above men-
tioned velocity states. In figure 3.4(b) two typical states are depicted, the
constant sum velocity state and the constant slip ratio state. These states
are represented by the traction curve and the Stribeck curve, respectively.

In section 3.4 it will be demonstrated that the frictional behaviour
of contacts inside gear transmissions and roller bearings may be charac-
terised by a constant slip ratio and therefore it is logical to look at the
Stribeck behaviour for modelling the friction forces. Since the Stribeck
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curve is defined for a constant slip ratio, the curve is plotted as a function
of the sum velocity u(+). Schipper (1988) defines a lubrication number

L =
ηu(+)

pavRa
, (3.13)

where η is the inlet viscosity, pav is the average pressure and Ra is the
combined surface roughness. Plotting the Stribeck curve as a function of
this lubrication number L yields a so-called generalised Stribeck curve,
see figure 3.5.

The Stribeck curve is characterised by three lubrication regimes:
Boundary Lubrication (BL), Mixed Lubrication (ML) and Elasto–
Hydrodynamic Lubrication (EHL). In figure 3.5, these lubrication regimes
are indicated in a typical Stribeck curve for an arbitrary lubricated con-
tact. In the BL regime, at very low velocity, the friction force is mainly
caused by the contact between the surface asperities. As the velocity
increases, the lubricant film grows and less asperities are in contact, re-
sulting in a reduction of the friction force caused by the surface summits.
On the other hand, viscous friction caused by the lubricant is increasing.
This regime is known as the ML regime. Finally, in the EHL regime, the
lubricant film has grown to such an extend that the surfaces are fully sep-
arated. The friction force is the force needed to shear the lubricant film. In
figure 3.5 three different Stribeck curves are plotted at logarithmic scales.
The curves range from Newtonian behaviour to full non-Newtonian be-
haviour of the lubricant. It appears that the rheological properties of the
lubricant play a central role with regard to the friction behaviour in the
EHL regime.

3.3.2 Friction forces in the lubrication regimes

In the boundary lubrication regime, the friction force is mainly deter-
mined by the friction force due to the asperity contacts, denoted by f (a).
On the other hand, in the elasto-hydrodynamic lubrication regime, the
friction force f (v) due to the viscosity of the lubricating film is dominant.
In the mixed lubrication regime both the asperity contacts and the lubri-
cant viscosity determine the total friction force.

With this in mind, the total friction force f ( f ) is assumed to be the sum
of the friction force due to the asperity contacts f (a) and a friction force
due to hydrodynamic component f (v) (Gelinck and Schipper, 2000). This
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Figure 3.5: A typical Stribeck curve for an arbitrary lubricated contact: the
transition from boundary lubrication (BL) via mixed lubrication (ML) to elasto-
hydrodynamic lubrication (EHL) as a function of the lubrication number L. Note
that the curves are plotted at logarithmic scales. Curve (a) shows typical New-
tonian behaviour of the lubricant at high velocity. In curve (b) the lubricant
is mainly Newtonian, but at high velocity the lubricant shows non-Newtonian
behaviour. Curve (c) corresponds with full non-Newtonian behaviour.

leads to the expression for the total friction force

f ( f ) = f (a) + f (v)

=
n(a)

∑
i=1

∫∫

A
(a)
i

τ
(a)
i dA

(a)
i +

∫∫

A(H)

τ(s)dA(H) , (3.14)

where n(a) is the number of asperities in contact, A
(a)
i denotes the area

of contact of a single asperity i, τ
(a)
i represents the shear stress at the as-

perity contact i, A(H) is the effective area of contact of the hydrodynamic
component and τ(s) is the shear stress of the hydrodynamic component.
In order to describe the total friction force, both the expressions for the
friction force due to the asperity contacts f (a) and the friction force due to
hydrodynamic component f (v) will be investigated in more detail in the
next subsections.
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Figure 3.6: Traction curve: the shear stress as a function of the shear rate at con-
stant sum velocity. Two typical curves for fluids which differ in their rheological
behaviour are depicted. Note that at high slip ratios the friction force decreases as
a function of the slip ratio due to shear heating of the fluid.

Friction force due to the hydrodynamic component

The force needed to shear a fluid film resembles the sliding friction be-
tween two lubricated surfaces. The assumption that a force is needed
to shear a fluid film was first proposed by Sir Isaac Newton (1642-1727).
Newton states that the shear stress τ(s) is proportional to the shear rate γ̇

in the film

τ(s) = η γ̇ , (3.15)

where η is known as the viscosity. Lubricant behaviour is called Newto-
nian when the shear stress–shear rate relationship is according to equa-
tion (3.15) and consequently the lubricant has a viscosity which is shear
rate independent.

Many lubricants, however, show non-Newtonian behaviour at increas-
ing shear rates and show a limiting shear stress for high shear rates. This
can be represented graphically in a so-called traction curve, see figure 3.6,
where the different rheological behaviour of two lubricants is depicted
(Evans, 1983). Curve i represents the Newtonian behaviour of the lubri-
cant, according to equation (3.15). The second curve ii describes the full
non-Newtonian behaviour of lubricants. At low slip ratios the friction
behaviour is isothermal. At high slip ratios, however, the friction force
decreases as a function of the slip ratio due to shear heating of the fluid.
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In this thesis the effect of shear heating will not be included in the friction
models. Note that for zero slip situations, i.e. in a pure rolling contact, the
shear stress appears to be zero. However, due to the rolling motion there
is still some pressure flow in the lubricant which gives rise to nonzero
shear stress.

The Newtonian model of equation (3.15) will be used to model the
linear viscous behaviour expressed by curve i. The model of Bair and
Winer (1979a) is adopted to describe curve ii, the shear stress as a function
of the shear rate for a full non-Newtonian fluid,

τ(s) = τ
(s)
l

(
1 − e

− η0γ̇

τ
(s)
l

)
, (3.16)

where η0 is the viscosity at reference temperature and pressure and τ
(s)
l

is the limiting shear stress. Assuming that the sliding velocity u(−) is a
continuous function of the height h of the lubricating film and that there
is no slip at the interface between the fluid film and the solid surfaces, the
shear rate γ̇ in the lubricating film can be approximated by

γ̇ =
u(−)

h
. (3.17)

Equations (3.15) and (3.16) imply that the shear stress τ(s) may be con-
sidered constant when the shear rate γ̇ is given and the film thickness h
is constant. Consequently, the friction force f (v) due to the hydrodynamic
component can be be approximated by considering a constant average
film height h over a certain hydrodynamic area of contact A(H), yielding

f (v) =
∫∫

A(H)

τ(s)dA(H) ≈ τ(s)A(H) . (3.18)

For the Newtonian case, substitution of equations (3.15) and (3.17)
into equation (3.18), yields the following expression for the friction force
due to the hydrodynamic component:

f (v) = ηA(H) u(−)

h
. (3.19)

For non-Newtonian situations, substitution of the equations (3.16) and
(3.17) into equation (3.18) yields

f (v) = A(H)τ
(s)
l

(
1 − e

− η0u(−)

τ
(s)
l

h
)

. (3.20)
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Inspection of these relationships show a dependency of the hydrody-
namic friction force on the height h of the lubricating film. It appears
that h strongly depends on the sum velocity u(+), as will be outlined here-
after in more detail.

Height of the lubricating film

The calculation of the lubricant film height has been studied intensively
in Elasto–Hydrodynamic Lubrication (EHL) research (Grubin and Vino-
gradova, 1949; Crook, 1961; Dowson and Higginson, 1977; Dowson, 1995;
Spikes, 1999). It has been found that the film height depends on six inde-
pendent variables:

R the radius of the roller pair,

E the elastic modulus of a roller pair,

η0 the viscosity,

α(l) the pressure exponent of the lubricant;

η = η0eα(l)p, with pressure p,

w the load per unit width,

u(+) the sum velocity.

The film height is then expressed as a function

h

R
= f

(

w

ER
,

u(+)η0

ER
, α(l)E

)

, (3.21)

where the above variables are grouped into four dimensionless parame-
ters. These dimensionless parameters are:

the relative film height H =
h

R
, (3.22)

the load parameter W =
w

ER
, (3.23)

the velocity parameter U =
u(+)η0

ER
, (3.24)

the material parameter G = α(l)E . (3.25)

It has been found analytically by Dowson and Higginson (1977) that
the minimum film thickness could fairly accurately be represented by

Hmin =
1.6G0.6U0.7

W0.13
. (3.26)
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The equation shows that the influence of the material parameter G is
quite large. However, G can be considered to be constant for a specific
combination of materials and lubricant. Furthermore, it can be observed
that the load parameter W only weakly influences the film height. The
velocity parameter U is clearly the most significant parameter. From ex-
pression (3.26), there follows a proportionality between the lubricant film
height and the sum velocity, expressed as

h ∝ (u(+))0.7 . (3.27)

However, according to experimental results by Crook (1961), the lubricant
film height shows a proportionality to the sum velocity u(+) given by

h ∝ (u(+))0.5 . (3.28)

This indicates that the power in which the film height relates to the sum
velocity does not have an unique value, but varies between 0.5 and 0.7
depending on the details of the specific contact. Therefore, its precise
value has to be determined for the specific application at hand.

With these observations, it is possible to express the film height h as a
function of the sum velocity u(+) as

h = h(s)

(

u(+)

u(s)

)δ

, (3.29)

where the proportionality constant h(s) represents the reference height of
the lubricant film, which is a function of the load parameter W, the ma-
terial parameter G and the radius R. In order to keep proper dimension,
a scaling velocity u(s) is introduced, which relates to the lubricant viscos-
ity η, the elastic modulus E and the radius R. From equations (3.27) and
(3.28) it follows that the power δ is expected to range from 0.5 to 0.7.

With the simplified expression for the height of the lubricant film and
the equations for the viscous friction forces derived in section 3.3.2, the
viscous friction forces f (v) can be described as a function of both the sum
velocity u(+) and the sliding velocity u(−). Substitution of the expression
for the film height, equation (3.29), into equation (3.19) yields

f (v) =
ηA(H)u(−)

h(s)

(

u(s)

u(+)

)δ

, (3.30)

which is the viscous friction force in the case of Newtonian behaviour of
the lubricant.
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Friction force due to asperity contacts

In this section, an equation for the friction force due to the asperity con-
tacts in the boundary lubrication regime will be derived. The normal load
acting on a lubricated contact is shared between the hydrodynamic com-
ponent and the interacting asperities of the surfaces. Therefore, as the
carrying capacity due to the hydrodynamic action increases as a function
of the film height, the load carried by the asperities decreases.

Greenwood and Williamson (1966) have introduced an approach to
model the contacts between the asperities which is based on the statistics
of the surface roughness of the surfaces in contact. The height distribution
of the surface summits can be considered Gaussian, but—according to
Greenwood and Williamson (1966)—an exponential distribution proves
to be a fair approximation for the uppermost 25% of the asperities of
most surfaces. Using the exponential distribution has the advantage that
a fairly simple expression for the number of asperities n(a) in contact can
be used (Greenwood and Williamson, 1966). The expression is given by

n(a) = d(a)A(a) e−λ(s)
, (3.31)

where d(a) is the asperity density and A(a) denotes the total area of con-
tact. Exponent λ(s) is known as the separation which is the ratio between
the film height h and the standard deviation σ(s) of the height distribution
of the surface summits, defined as

λ(s) =
h

σ(s)
. (3.32)

Using the lubricant film height given by equation (3.29), the separation
can be written as a function of the sum velocity u(+)

λ(s) =
h(s)

σ(s)

(

u(+)

u(s)

)δ

. (3.33)

Note that the expression for the lubricant film height of equation (3.29)
does not hold true for cases wherein the height of the lubricating film
is in the order of the surface roughness. The separation expressed in
equation (3.33) predicts a zero separation for a zero sum velocity, where
in fact the separation will approach a constant value towards zero sum
velocity, as there will always be some lubricant between the asperities.
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The total friction force due to all n(a) asperities can be approximated
as

f (a) =
n(a)

∑
i=1

∫∫

A
(a)
i

τ
(a)
i dA

(a)
i ≈ n(a) f (a,BL) , (3.34)

where f (a,BL) is the average friction force due to a single asperity in the
BL regime. Substitution of expression (3.31) for the number of asperities
and the separation given by equation (3.33) into equation (3.34) yields
the expression for the friction force f (a) due to the asperity contacts as a
function of the sum velocity

f (a) = f (a,BL)d(a)A(a) exp

(

− h(s)

σ(s)

(
u(+)

u(s)

)δ
)

. (3.35)

Note the correspondence of equation (3.35) with the model of Bo and
Pavelescu (1982), as in equation (3.4) from section 3.2.1 with T ( f ,C) = 0 .

According to Greenwood and Williamson (1966), an exact proportion-
ality between the load and the number of asperities in contact exists. This
implies that the separation is a function of the load, which is, at first sight,
contradictory to the statements in section 3.3.2, where the load depen-
dency of the film height and thus the separation is minimal. This contrast
can be explained by the fact that the equations for the film height from
section 3.3.2 only apply to the elasto-hydrodynamic lubrication regime.
In the boundary lubrication regime, the lubricant film is not completely
developed and the friction force is still largely dependent on the contact
load. However, for components running in the ML and EHL regimes,
such as helical or spur gears and prestressed roller bearings, the effect
of load dependency within the BL regime is small. For contacts running
mainly in the BL and the ML regimes, such as worm gears, the influence
of the magnitude of the transmitted force on the friction force in the BL
regime might not be negligible, as will be shown in section 4.4.4.

3.4 Friction models of elementary components

In sections 3.3.2 and 3.3.2, expressions for the friction force due to lubri-
cant viscosity and due to the asperities for a lubricated contact between
two rolling–sliding discs have been presented. In this section, these ex-
pressions are applied to describe the friction forces arising in two elemen-
tary components; a helical gear-pair and a prestressed roller bearing.
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Figure 3.7: A helical gear pair.

3.4.1 Friction model of a helical gear pair

In figure 3.7 a helical gear pair is depicted. Here, the upper gear wheel
drives the lower gear wheel. The figure shows that several teeth are in
contact with each other at the same instance in a gear pair. Furthermore,
since the gear pair is of the helical type, a single tooth remains in contact
over the full width of the gear wheel along the path of contact lc on the
pressure line.

The two surface velocities u
(t)
1 and u

(t)
2 are depicted in the teeth con-

tact illustrated in the figure 3.7. At the point where the pressure line

crosses the pitch circle, the velocities u
(t)
1 and u

(t)
2 are equal in magnitude

which results in a pure rolling motion (u(−) = 0). However, at all other
points β1 6= 0. Thus, the velocities are not equal in magnitude, leading
to a nonzero sliding velocity. At the moment of interconnection of the

teeth, the surface velocity u
(t)
1 associated with the driving gear is lower

in magnitude as compared to u
(t)
2 . Towards the pitch circle, they become

gradually equal in magnitude. After the moment of pure rolling, u
(t)
1 be-

comes larger in magnitude in comparison with u
(t)
2 . Consequently, there

is a large part during the interconnecting phase where there is a nonzero
sliding velocity. Considering the exact analytical expressions for both
the sum and the sliding velocities will lead to a complex friction model.
However, it is possible to simplify the expressions for the velocities, see
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Appendix A, in such a way that a practical friction model can be derived
without loss of generality.

The angular velocity ω1 of the driving gear is taken as being equal
to the angular velocity of the servo motor, so that ω1 = n(g)q̇, where
n(g) is the gear ratio of the complete transmission. Using the velocity
expression (A.8) as is derived in Appendix A, the sum velocity u(+) can
then be approximated as

u(+) = r(g)q̇ , (3.36)

where r(g) represents a kinematic factor which is given by

r(g) = n(g)R
(p)
1 sin(α(p)) , (3.37)

with R
(p)
1 the radius of the pitch circle and pressure angle α(p). Using the

average slip ratio s0 from equation (A.11) in Appendix A, the expression
for the sliding velocity becomes

u(−) = s0r(g) q̇ . (3.38)

Application of the average slip ratio s0 implies that the viscous friction
force inside gear transmissions may be approximated by a Stribeck curve.

The helical gear pair inside the joint transmission is operating at the
servo side of the transmission at high velocities and relatively small loads.
Combined with the fact that the contacts between the gear teeth are line
contacts, the contact pressures in the helical gear pair are considered to
be sufficiently low in order to allow the assumption that the lubricant
behaviour will be Newtonian. According to equation (3.14), the friction
force is taken as the sum of the friction force due to the asperity contacts
and the (averaged) viscous friction force. Summation of the viscous fric-
tion force for the Newtonian case, equation (3.30), and the friction force
due to the asperities, equation (3.35), leads to the combined (averaged)
friction force for two teeth in contact

f
( f )

= f (a) + f
(v)

= f (a,BL)d(a)A(a) exp

(

− h(s)

σ(s)

(
u(+)

u(s)

)δ
)

+
ηA(H)u(−)

h(s)

(

u(s)

u(+)

)δ

.

(3.39)

The total friction torque T ( f ) can be derived by multiplying the av-

eraged friction force f
( f )

with the radius of the base circle R
(b)
1 and the
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Figure 3.8: A typical Stribeck curve for a helical gear pair. The contributions to
the friction torque from the asperity contacts and the hydrodynamic component
are depicted separately.

number of teeth k in contact. Accordingly, substitution of equations (3.37),
(3.36) and (3.38) into equation (3.39) results in the friction model of a he-
lical gear pair

T ( f ) = T (a) + T (v) = T (a,BL) e−(q̇/q̇(s))
δ

︸ ︷︷ ︸

asperities

+ c(v)q̇(1−δ)

︸ ︷︷ ︸

viscosity

, (3.40)

with the parameters

T (a,BL) = kR
(b)
1 f (a,BL)d(a)A(a) , (3.41a)

q̇(s) =
u(s)

r(g)

(

σ(s)

h(s)

)1/δ

, (3.41b)

c(v) =
kR

(b)
1 s0ηA(H)

h(s)

(

u(s)

r(g)

)δ

. (3.41c)

A typical Stribeck curve for a helical gear pair, represented by the
model in equation (3.40) with an arbitrary parameter set, is illustrated in
figure 3.8. It clearly shows that the asperity contacts are responsible for
the friction force in the BL regime and that the hydrodynamic component
dominates the friction force in the EHL regime.
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Figure 3.9: Schematic representation of a roller bearing.

3.4.2 Friction model of a prestressed roller bearing

In figure 3.9, a roller bearing is depicted. The bearing is an assembly of
two concentric circular raceways, the inner ring and the outer ring. For
elimination of backlash, the bearings in the robot joints are prestressed.
The difference in velocity between the inner ring and the outer ring is
covered by the rolling motion of the rollers in between these raceways.
Small differences between the velocities (u1, u2), and also between the
velocities (u′

1, u′
2) cause friction forces in the contact surfaces between a

roller and both the inner and outer rings. These friction forces form a
torque that sets the roller in motion. This process, known as traction, was
introduced in section 3.3.1. Since the bearing is highly prestressed, it is
assumed that the lubricant behaviour will be non-Newtonian and it will
start to behave like a solid, even for small slip ratios (Bair and Winer,
1979b).

The friction force can be computed as the sum of the viscous friction
and the friction force caused by the asperities. Due to the non-Newtonian
behaviour of the lubricant in the bearing, equation (3.20) is used to com-
pute the viscous friction force.

Equation (3.35) will account for the friction force due to the asperity
contact. Combining these equations yields an expression for the friction
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force in a single contact between a roller and a raceway inside a bearing

f ( f ) = f (a) + f (v)

= f (a,BL)d(a)A(a) exp

(

− h(s)

σ(s)

(
u(+)

u(s)

)δ
)

+ A(H)τ
(s)
l

(
1 − e

− η0u(−)

τ
(s)
l

h
)

.

(3.42)

The velocity ub of a rolling element, see figure 3.9, is expressed as

ub =
r(b)

2
(ω1 − ω2) , (3.43)

where r(b) is the average raceway radius and ω1 and ω2 denote the angu-
lar velocity of the inner and outer raceway, respectively. By assuming a
constant—but very small—average slip ratio s0, the local surface velocities
become respectively

u1 = ub , (3.44a)

u2 = (1 − s0)ub . (3.44b)

With q̇ = ω1 − ω2, the velocities u(+) and u(−) can be expressed as follows

u(+) ≈ r(b)q̇ , (3.45a)

u(−) ≈ r(b)s0q̇ . (3.45b)

The total friction torque T ( f ) generated by a prestressed roller bearing
is considered as the sum of all torques generated by the friction forces at
all roller–raceway contacts, which is acquired by multiplying the friction
force in equation (3.42) with radius r(b) and the number of rolling ele-
ments k. Substitution of the velocity expressions (3.45) into equation (3.42)
yields the expression for the friction torque of a prestressed roller bearing

T ( f )
bearing = T (a) + T (l) = T (a,BL) e−(q̇/q̇(s))

δ

︸ ︷︷ ︸

asperities

+ T (v,l) (1 − e−q̇/q̇(l)
)

︸ ︷︷ ︸

viscosity

, (3.46)
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Figure 3.10: A typical Stribeck curve for a prestressed roller bearing. Note that
the friction torque decreases from the asperity friction torque T (a,BL) towards the
(limiting shear stress) viscous friction torque T (v,l).

with the parameters

T (a,BL) = r(b)k f (a,BL)d(a)A(a) , (3.47a)

q̇(s) =
u(s)

r(b)

(

σ(s)

h(s)

)1/δ

, (3.47b)

T (v,l) = rkτ
(s)
l A(H) , (3.47c)

q̇(l) =
τ

(s)
l hl

rs0η0
. (3.47d)

A typical Stribeck curve for a prestressed roller bearing represented
by the model in equation (3.46) is illustrated in figure 3.10. The curves
for the friction torque generated by the asperity contacts and the friction
torque due to lubricant viscosity are also plotted separately. Note that the
friction torque decreases from the asperity friction torque T (a,BL) towards
the (limiting shear stress) viscous friction torque T (v,l).

The film height h is not included as a function of the rolling velocity in
the expression for the viscous friction force in equation (3.46). This sim-
plification is introduced since the dependency of the film height on the
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rolling velocity only influences the shape of the exponential function as-
sociated with the non-Newtonian behaviour. Furthermore, in the velocity
region where the exponential function has an effect, the friction torque is
dominated by the friction torque due to the asperity contacts. Therefore,
the film height h for the viscous part can in this case be approximated by
a constant film height hl .

In sections 3.4.1 and 3.4.2, friction models for both a gear pair and a
prestressed roller bearing have been derived. The models are based on
physical models from tribology literature in which elementary variables
such as lubricant viscosity, contact topology and material properties have
been taken into account. These elementary variables have been combined
into a new set of parameters, some of which are constant for a specific
contact, while others may change during operation, e.g. due to temper-
ature variations. In the next section, the two models will be used to
construct the joint friction models for the Stäubli RX90B.

3.5 The joint friction model

The next step is to combine the models derived in the previous section
into friction models that account for the friction that arises in a single
robot joint. The first four robot joints are constructed in a similar way ac-
cording to the schematic representation given in figure 3.1(a). The joints
include a helical gear pair, a cycloidal transmission and a joint bearing
support (Gerat, 1994). The remaining two joints in the robot’s wrist, see
figure 3.1(b), are driven via a worm and wheel gear (Gerat and Palau,
1998) and joint six includes a spiral bevel gear. Naturally, the wrist as-
sembly is equipped with roller bearings as well.

The joint friction model can be considered as a combination of the fric-
tion models associated with the joint transmission components. However,
summation of all sub-models will lead to a large friction model which in-
cludes many parameters. Instead, only the friction characteristics of the
components will be evaluated and only the most significant effects will be
taken into account. The contributions to the friction torques of elements
such as seals are assumed to be less significant and are not taken into
account. First, the friction model for the joints 1 through 4 is discussed
and next, the friction model for the wrist assembly is dealt with.
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3.5.1 Friction model for the first four robot joints

The first four robot joints are constructed according to the schematic rep-
resentation given in figure 3.1(a). The assembly contains three main com-
ponents: a helical gear pair, a cycloidal transmission and the joint bear-
ings. The joint bearings are highly prestressed and therefore it is ex-
pected that the bearings are responsible for the main part of the asperity
friction torque. The viscous friction torque of the bearings, however, is
much lower than its asperity friction torque, as can be observed from the
Stribeck curve of the roller bearing, see figure 3.10. Taking into account
that the helical gear pair in the joint is operating at a high angular velocity
due to the high transmission ratio, it can be expected that its viscous fric-
tion torque will be dominant with respect to the viscous friction torque of
the bearing. The cycloidal gears are operating at a low angular velocity
and are prestressed as well. This will result in a small viscous friction
torque in comparison with the helical gear pair. Furthermore, the friction
behaviour at low velocity will be similar to the asperity friction behaviour
of a roller bearing. The final joint friction model will be a combination of
the asperity part of the model of a roller bearing, equation (3.46), and the
viscous part of the model of a helical gear pair, equation (3.40). This then
yields the combined friction model for joint j:

T ( f )
j = T (a,BL)

j e
−
(

q̇ j/q̇
(s)
j

)δ
(a)
j

+ c
(v)
j q̇

(

1−δ
(v)
j

)

j . (3.48)

Note the different values for δ
(a)
j and δ

(v)
j as the friction torque from the

asperities and the viscous friction torque are generated at different el-
ements and may therefore show a different film thickness–velocity be-
haviour.

For each joint j, there are five unknown parameters; the asperity fric-

tion torque T (a,BL)
j , the Stribeck velocity q̇

(s)
j , the Stribeck velocity power

δ
(a)
j , the viscous friction coefficient c

(v)
j and the viscous friction power

δ
(v)
j . The parameters δ

(a)
j , δ

(v)
j and the Stribeck velocity q̇

(s)
j depend on

the configuration of the friction contacts. Since the configuration of these
contacts is assumed to be time-invariant, these parameters are assumed

to be constant. The viscous friction coefficient c
(v)
j depends on the lubri-

cant viscosity η and, as a result, it depends on temperature. The values
for all unknown parameters will be obtained by means of experimental
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identification. It appears that the static asperity friction torque T (a,BL)
j

depends only slightly on temperature, see section 3.7.

Comparing the friction model in equation (3.48) with the “classical”
friction model of Armstrong-Hélouvry (1991) as is presented in equa-
tion (3.5), two main differences can be noticed. The first difference is
shown in the viscous friction part, where the new model shows a nonlin-

ear velocity-viscous friction relation in terms of c(v)q̇(1−δ(v)), as opposed to
a linear velocity relation expressed by c(v)q̇. The second aspect in which
the new model differs from the standard model is that the Coulomb fric-
tion term has disappeared. This is due to the fact that the new friction
model is derived for lubricated surfaces and that Coulomb friction gen-
erally is associated with dry contacts.

3.5.2 Friction model of the wrist assembly

The wrist assembly includes both the fifth and the sixth joint of the robot.
As the servos are mounted inside the fourth link of the robot, a gear
transmission transfers the motion from servo 6 through the fifth joint to
joint 6. This causes a kinematic coupling between motor 5 and joint 6,
see figure 3.11. The angular velocity of servo 5 is directly proportional to
q̇5. However, the angular velocity of servo 6 is related to the difference
between q̇5 and q̇6. Hence an extra friction model is needed. The velocity
q̇7 associated with the extra friction model is defined as

q̇7 = q̇5 + q̇6 . (3.49)

In figure 3.11, the three friction models are indicated by a, b and c
and represent the friction models of the worm and wheel gear of servo
5, the joint bearing of joint 6 and the worm and wheel gear of servo 6,
respectively. The friction models a, b and c for the whole wrist assembly
model are given by

T ( f )
a = T (a,BL)

5 e
−
(

q̇5/q̇
(s)
5

)δ
(a)
5

+ c
(v)
5 q̇

(

1−δ
(v)
5

)

5 , (3.50a)

T ( f )
b = T (a,BL)

6 e
−
(

q̇6/q̇
(s)
6

)δ
(a)
6

+ T (v,l)
6 (1 − e−q̇6/q̇

(l)
6 ) , (3.50b)

T ( f )
c = T (a,BL)

7 e
−
(

q̇7/q̇
(s)
7

)δ
(a)
7

+ c
(v)
7 q̇

(

1−δ
(v)
7

)

7 . (3.50c)
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Figure 3.11: Schematic overview of the location of the friction models a, b and c
in the wrist assembly.

The friction torques T ( f )
a , T ( f )

b and T ( f )
c are transferred to friction torques

at joint level as follows:

T ( f )
5 = T ( f )

a + T ( f )
c , (3.51)

T ( f )
6 = T ( f )

b + T ( f )
c . (3.52)

The friction models a, b and c can be identified separately by a proper
selection of the joint velocities. Let q̇(k) be the set of velocities at which
the Stribeck curve is evaluated. The identification experiments are then
given by

q̇5 = q̇(k)

q̇6 = −q̇(k)

}

⇒ T ( f )
5 = T ( f )

a , T ( f )
6 = T ( f )

b , T ( f )
c = const. , (3.53a)

q̇5 = q̇(k)

q̇6 = q̇(k)

}

⇒ T ( f )
5 = T ( f )

a + T ( f )
c , T ( f )

6 = T ( f )
b + T ( f )

c , (3.53b)

from which the Stribeck curves for the friction models a, b and c can be

obtained. Note that in equation (3.53a) the friction torque T ( f )
c may be

anywhere in between −T (a,BL)
7 and T (a,BL)

7 as q̇7 equals zero.



52 Chapter 3. Joint friction

3.6 Friction parameter estimation

The values of the parameters are estimated based on the measured values
of the Stribeck curve. The measured values are the mean friction torques
at constant joint speed. Three measurement series are used in which the
measurements at each robot joint are carried out after an initial warmup
motion of the robot, see section 3.2.2.

The friction models 1 to 4 and a and c are nonlinear functions of the
parameters δ(a), q̇(s) and δ(v) and linear functions of the parameters T (a,BL)

and c(v). The friction model b is a nonlinear function of the parameters
δ(a), q̇(s) and q̇(l) and is a linear function of the parameters T (a,BL) and
T (v,l). Estimating these parameters in a single optimisation requires a
nonlinear optimisation technique. However, nonlinear optimisation tech-
niques may lead to local optima in which non-physical parameter values
are found, as was already concluded in section 3.2.2. To prevent diffi-
culties with nonlinear estimation techniques, the values are obtained in
four steps by means of linear least squares techniques. These steps are
described concisely below.

The first step of the identification process is to determine the power
1 − δ(v) and the magnitude c(v) of the viscous part. Taking the natu-
ral logarithms of the joint torques and the joint velocities allows for the
application of a linear least squares estimation technique to find the vis-
cous friction parameters. Since only the high velocity region, from 0.5 to
4.5 rad/s, is considered, the influence of the asperity friction torques may
be neglected. The optimisation problem is defined as

p̂( f ,v) = arg min
p( f ,v)

∥
∥
∥ ln(T ( f ,v)) − A( f ,v)p( f ,v)

∥
∥
∥

2

2
, (3.54)

with the parameter vector

p( f ,v) =
[

1 − δ(v) ln(c(v))
]T

(3.55)

and the torque vector

T
( f ,v) =

[

T ( f ,v)
1 · · · T ( f ,v)

n

]T
. (3.56)

The matrix A( f ,v) is then defined as

A( f ,v) =






ln(q̇1) 1
...

...
ln(q̇n) 1




 . (3.57)
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Both T
( f ,v) and A( f ,v) are evaluated at n = 6 measured velocity values in

the range from 0.5 to 4.5 rad/s.
The linear least squares solution is found by computing

p̂( f ,v) =
(

A( f ,v)T
A( f ,v)

)−1

A( f ,v)T
T

( f ,v) , (3.58)

and the unknown viscous friction parameters are then obtained by

δ(v) = 1 − p̂
( f ,v)
1 , (3.59a)

c(v) = exp
(

p̂
( f ,v)
2

)

. (3.59b)

The second step involves the selection of a proper value for the
power δ(a). As a logical first estimate, a value equal to δ(v) is taken. Ad-
ditionally, as the value q̇(s) for the Stribeck velocity needs to be chosen. A
good first estimate is a value close to the joint velocity where the friction
torque is at its minimum.

During the third step, the magnitude of the static asperity friction
T (a,BL) is determined by means of a least squares estimation analogous
to the estimation technique described in section 3.2.2. For best model fits,
the magnitude of the viscous friction c(v) will again be included in the
estimation, which can be done because c(v) is linear in the model. The
optimisation problem is now defined as

p̂( f ) = arg min
p( f )

∥
∥
∥T

( f ) − A( f )p( f )
∥
∥
∥

2

2
, (3.60)

with the parameter vector

p( f ) =
[

T (a,BL) c(v)
]T

(3.61)

and the torque vector is

T
( f ) =

[

T ( f )
1 · · · T ( f )

n

]T
. (3.62)

The matrix A( f ) is then

A( f ) =








e−|q̇1/q̇(s)|δ(a)

q̇
(1−δ(v))
1

...
...

e−|q̇n/q̇(s)|δ(a)

q̇
(1−δ(v))
n








. (3.63)
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Model T (a,BL) q̇(s) δ(a) c(v) δ(v) T (v,l) q̇(l)

1 0.0255 0.0249 0.5 0.0911 0.3338 - -

2 0.0448 0.0280 0.5 0.0853 0.5214 - -

3 0.0093 0.0300 0.5 0.0241 0.4383 - -

4 0.0332 0.0250 0.5 0.0646 0.4520 - -

a 0.0115 0.0750 0.5 0.0280 0.2214 - -

b 0.0194 0.3500 0.5 - - 0.0098 0.900

c 0.0300 0.2250 0.5 0.0499 0.3156 - -

Table 3.1: Estimated friction parameters for the friction models of joints 1 through
4 and for the friction models a, b and c of the robot wrist. Note that the values for
T (a,BL), c(v) and T (v,l) are normalised using the maximum joint torques T (max).

In this case, both T
( f ) and A( f ) are evaluated at n = 20 measured velocity

values in the full velocity range. The least squares estimate is obtained by
computing

p̂( f ) =
(

A( f )T
A( f )

)−1

A( f )T
T

( f ) . (3.64)

During the fourth and final step, the hand picket values for δ(a) and
q̇(s) are manually fine-tuned using an iterative process. The resemblance
between the modelled Stribeck curve and the measured Stribeck curve is
inspected visually and by slightly modifying the values for δ(a) and q̇(s) a
set of appropriate vales is obtained. The identified values for the friction
parameters are given in table 3.1. The magnitudes T (a,BL), c(v) and T (v,l)

have been normalised with respect to T (max).

Figure 3.12 shows the measured mean Stribeck curve for T ( f )
as well

as the estimated Stribeck curve. Note that the measured Stribeck curve
is obtained by averaging the joint friction torques T ( f ) from n = 3 mea-
surements at each joint velocity. In figure 3.12(a) the full velocity range is
shown and in figure 3.12(b) a detail of the low (Stribeck) velocity range
is shown. In both figures the sampled standard deviation sn of the mea-
surements is also plotted. The sample standard deviation is computed
by

sn =

√

1

n

n

∑
i=1

(

T ( f )
i − T ( f )

)2
. (3.65)
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Figure 3.12: Measured (•) and modelled ( ) Stribeck curve for joint 1. The
sample standard deviation sn of the measured values is indicated by ( ).
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Figure 3.13: Measured and modelled Stribeck curves plotted at logarithmic
scales.
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In figures 3.13(a) and 3.13(b), both the measured and modelled

Stribeck curves for T ( f )
1 and for T ( f )

b are plotted on logarithmic scales.
It shows that the relative errors between the models and the measure-
ments are equally small across the full velocity range. Consequently, the
model accurately describes joint friction for both the low and the high
velocity ranges.

3.7 Temperature influence on friction behaviour

The lubricant viscosity strongly depends on the temperature of the lu-
bricant. As the temperature may vary significantly during operation, it
needs further attention. An expression for the temperature dependency
of the lubricant viscosity has been given by Bhushan (1999):

η = η0 exp

(
β

T
− β

T0

)

, (3.66)

where η and η0 are the viscosity at temperature T and reference temper-
ature T0, respectively, and β is the temperature–viscosity coefficient. For
Newtonian behaviour of the lubricant, the viscosity is the significant tem-
perature dependent variable in modelling the friction torque. For cases
wherein the behaviour of the lubricant is non-Newtonian, the limiting
shear stress is the temperature dependent variable although its tempera-
ture dependency is small.

The parameter c(v) in the joint friction model, equation (3.48), depends
on the lubricant viscosity in a linear way. Taking into account the relation-
ship between lubricant viscosity and temperature from equation (3.66),
the following proportionality arises

c(v) ∝ e
β
T , (3.67)

where T is the lubricant temperature. An increase in temperature will
lead to a decrease in viscous friction torque. Note that the power δ(v) in
the viscous friction part does not depend on the temperature.

The temperature dependency of the magnitude of the asperity friction
torque T (a,BL) is discussed next. In line with Greenwood and Williamson
(1966), the asperity density d(a) from equation (3.31) is considered con-
stant. Consequently, the magnitude of the asperity friction T (a,BL), which
is proportional to the density of the asperities, can also be assumed to
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Figure 3.14: Temperature influence on the Stribeck curve and the estimated fric-
tion model parameters at increasing temperature (T1 < T2 < T3 < T4) for joints
1. The values for the magnitudes T (a,BL) and c(v) are normalised with T (max).

be constant. This assumption implies that the asperity friction force is
independent of the lubricant viscosity and the temperature.

Four Stribeck curve measurements for joint 1 are carried out in order
to investigate the influence of temperature on the friction torque. The
temperature of the drives is influenced by the number of warmup cycles
that is performed. During a single warmup cycle the joint is moved from
−0.5π to 0.5π and back. Then only the parameters T (a,BL) and c(v) are
identified by means of linear least squares while the other parameters are
kept constant. The results are shown in figure 3.14.

Obviously, the friction torque due to the asperities increases slightly
at higher temperatures whereas the viscous friction parameter decreases.
The temperature dependency of the parameters T (a,BL) and c(v) has been
verified experimentally for all robot joints by Ransijn (2005). It appeared
that the model is linear in the parameters that are temperature dependent,
which allows the estimation of these parameters in a straightforward way
by means of linear least squares. The experiments also indicate that the
magnitude of T (a,BL) can indeed be considered invariant for changes of
lubricant temperature as it only changes slightly as a function of the rising
temperature.
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3.8 Pre-sliding friction

The models discussed in the previous section accurately describe joint
friction in the sliding regime. However, for velocities equal to zero, the
friction model is not defined and transitions from negative velocity to
positive velocity and vice versa cannot be described. So, in order to use
the friction model in dynamic robot simulations, which do include rever-
sals in the joint velocity, the model has to be extended in such a way that
it can cope with the so-called pre-sliding regime.

Pre-sliding friction characteristics can be added both kinematically
and dynamically. The kinematic solution is to define a function that de-
scribes the transition of the friction torque through zero as a function of
the joint velocity q̇. Dynamic pre-sliding models have an internal state
variable. This state variable resembles the elastic behaviour of the con-
nection asperities at zero velocity, which yields a friction torque that is
position dependent (Dahl, 1968, 1977).

3.8.1 Kinematic pre-sliding modelling

A very commonly applied kinematic friction model is the switching fric-
tion model:

T ( f ,S) =







T ( f )(q̇) if q̇ > 0 ,

0 if q̇ = 0 ,

−T ( f )(−q̇) if q̇ < 0 ,

(3.68)

where T ( f )(q̇) denotes the friction models that have been derived in sec-
tion 3.5. The friction model is suitable for inverse dynamic modelling,
where the joint velocity is accurately known as a function of time. How-
ever, in forward dynamic simulations of the controlled robot system, the
discontinuous nature of the friction model may cause integration difficul-
ties. Furthermore, small velocity variations around zero will cause rapid
changes between the positive T (a,BL) and negative −T (a,BL) asperity fric-
tion torques, which is clearly non-physical behaviour.

An improved solution would be the use of a smooth, but rapid, tran-
sition between the maximum and minimum asperity friction torque by
means of a continuous function. A convenient function is the inverse
tangent function, which yields

T ( f ,K) =
2

π
arctan(c q̇) T ( f )(|q̇|) , (3.69)
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where the superscript K denotes the kinematic friction model. The vari-
able c is used to scale the velocity range in which the function is effec-
tive. The effective velocity range is usually between −10−4 rad/s and
10−4 rad/s, which requires c to be in the order of 106.

3.8.2 Dynamic pre-sliding modelling

A well known dynamic pre-sliding friction model that incorporates an
internal state is the LuGre model (Canudas De Wit et al., 1995). In the
LuGre model, the pre-sliding regime is interpreted as bending bristles,
wherein a state z is a measure for the deflection of the bristles. At zero
joint velocity, the bending of the bristles is related to the relative joint
(micro) rotation q. The LuGre model is defined by a differential equation
for the state z and an output equation for the dynamic friction torque
T ( f ,D)

dz

dt
= q̇ − c(0)| q̇ |

g(q̇)
z, (3.70a)

T ( f ,D) = c(0) z + c(1) dz

dt
+ f (q̇) , (3.70b)

where the function g(q̇) describes the Stribeck effect, the function f (q̇)
describes the viscous friction, c(0) denotes the stiffness of the bristles and
c(1) is the damping coefficient.

In a steady state situation, dz
dt = 0, at nonzero velocities q̇ > 0, the

expression for the friction torque is reduced to

T ( f ,D) = g(q̇) + f (q̇) . (3.71)

Remembering the friction models from section 3.5, it is straightforward
to apply the following substitutions for the functions g(q̇) and f (q̇):

g(q̇) = T (a)(q̇) for the asperity friction, (3.72a)

f (q̇) = T (v)(q̇) for the viscous friction in gears, and (3.72b)

f (q̇) = T (l)(q̇) for the viscous friction in bearings . (3.72c)

The steady-state pre-sliding behaviour of the LuGre model is anal-
ysed by solving the differential equation (3.70a). For near zero positive
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velocities q̇, the following approximations may be introduced:

f (q̇ ≈ 0) = 0 , g(q̇ ≈ 0) = T (a,BL) ,

|q̇| = q̇ , T ( f ,D) = c(0)z . (3.73)

Substitution of equations (3.73) in (3.70a), rewriting q̇ as
dq
dt and some

rearranging yields

dz

dt
=

dq

dt

(

1 − c(0)

T (a,BL)
z

)

, (3.74)

which is simplified into the differential equation

dq =

(

T (a,BL)

T (a,BL) − c(0)z

)

dz . (3.75)

Solving the differential equation (3.75) yields

q1 − q0 =
−T (a,BL)

c(0)
ln
(

T (a,BL) − c(0)z
)
∣
∣
∣
∣
∣

z1

z0

, (3.76)

leading to

∆q =
T (a,BL)

c(0)
ln

(

T (a,BL) − c(0)z0

T (a,BL) − c(0)z1

)

. (3.77)

Introducing the boundary conditions q0 = 0 and q1 = q, combined with

the substitutions c(0)z0 = T ( f ,D)
0 and c(0)z1 = T ( f ,D), yields—after some

rearranging—the steady-state pre-sliding friction torque T ( f ,D) as a func-
tion of the relative displacement q

T ( f ,D) = T (a,BL) +
(

T ( f ,D)
0 − T (a,BL)

)

e
−q c(0)

T (a,BL) . (3.78)

It shows that the steady-state pre-sliding behaviour is expressed as an
exponential function, as is illustrated in figure 3.15(a). The figure shows
that the pre-sliding friction torque exponentially increases towards the
breakaway torque, which is the asperity friction torque T (a,BL).

The behaviour of the LuGre friction model at small displacements is
studied by applying a small sinusoidal torque to the friction model of
joint 1. The resulting behaviour shows a hysteresis loop, which is illus-
trated in figure 3.15(b). The hysteresis behaviour is of particular interest
for applications where a high positioning accuracy is required.
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Figure 3.15: Pre-sliding characteristics of the LuGre model for joint 1. The
friction torque T ( f ,D) as a function of the relative angular displacement q.

3.8.3 Kinematic vs. dynamic pre-sliding friction

In order to compare the performance of the kinematic and the dynamic
(LuGre) pre-sliding model, closed-loop simulations of joint 1 with the
robot in an upright position are performed. The joint is moved with
a sinusoidal velocity profile, which is illustrated in figures 3.16(a) and
3.16(b).

For this experiment, the first joint of the robot is modelled by a sin-
gle rotational inertia J. Generally, the unknown value for the pre-sliding
stiffness c(0) is obtained from an experiment where the joint torque is
slowly increased towards the asperity friction torque T (a,BL), while mea-
suring the angular displacement of the robot joint. This exercise requires
encoders with sufficiently high angular resolution. Unfortunately, the
standard robot set-up does not provide a high resolution such as this,
so an accurate estimation of the pre-sliding regime is not possible (Kool,
2003).

In an alternative approach, the value for the pre-sliding stiffness is
chosen so that the rise in the simulated joint torque corresponds well with
the measured joint torque. The resulting value for c(0) is in the order of
104 − 105, depending on the specific joint. The value for the micro-viscous
damping coefficient c(1) is chosen so that a relative viscous damping of
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Figure 3.16: Pre-sliding friction performance of a kinematic and a dynamic (Lu-
Gre) friction model during 1 DOF closed-loop simulation of joint 1, with: the
measured torque, the simulated torque and the residual torque.
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ζ = 0.1 is obtained,

ζ =
c(1)

2Jωn
, (3.79a)

with

ωn =

√

c(0)

J
, (3.79b)

which yields a value which is generally in the order of
√

c(0) and in this
case this yields a value of approximately 10 for c(1).

The simulation results are shown in figures 3.16(c) and 3.16(d). The
first conclusion that can be drawn from these results is that the closed-
loop simulations accurately predict the joint torques. Secondly, there is,
at the presented scale, no noticeable difference between the kinematic and
the dynamic friction models.

As pointed out before, the angular resolution of the position sensors is
not sufficient for a detailed study of the pre-sliding characteristics such as
the hysteresis effect. Apparently, the reverse is also true and that leads to
the conclusion that for closed-loop simulations with a rigid robot model it
is not necessary to study the pre-sliding behaviour in more detail and that
the presented pre-sliding models are sufficiently accurate for the scope of
this thesis. A definitive choice for either the kinematic or the dynamic
pre-sliding friction model will be made in chapter 5.

Fitting the robot with more accurate angular sensors to study the pre-
sliding behaviour in detail might not give a straightforward solution be-
cause disturbances such as backlash in the gears and joint flexibility start
to become visible at smaller scales. Consequently, a detailed study of
the pre-sliding behaviour requires that effects such as backlash and joint
flexibility should also be included in the robot model.

3.9 Discussion

In this chapter, the modelling and identification of joint friction has been
discussed. It was shown that phenomenological friction models, com-
monly used in control literature, are inadequate for modelling the viscous
friction behaviour of the robot transmission for the full velocity range
with sufficient accuracy. Therefore, a new joint friction model has been
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developed that relies on insights from sophisticated tribological models.
The friction behaviour of two lubricated discs in a rolling–sliding contact
is used to analyse the different contacts inside the gears and bearings of
the robot transmission.

It is shown that the film height of the lubricant is a function of the sum
velocity, which causes a nonlinear relationship between the joint angular
velocity and the viscous friction torques. The analysis shows different
behaviour for gears and prestressed bearings. Furthermore, it has been
shown that the level of the friction force caused by the asperity contacts
depends on the ratio between lubricant film height and the height distri-
bution of the surface summits. Increasing the velocity leads to a decrease
in the asperity friction torque.

Sub-models for the viscous friction and the friction due to the asper-
ities are combined into two new friction models; one for gears and one
for prestressed roller bearings. The sub-models describing the asperity
part of the roller bearing and the viscous part of the helical gear pair are
combined into a joint friction model. Using this method, a new friction
model is developed that accurately describes the friction behaviour with
a minimal and physically sound parametrisation.

Next, the joint friction model parameters have been identified by
means of experiments. The experiments indicate that the model accu-
rately describes the friction torque within the full velocity range. The
model is linear in parameters that are temperature dependent which al-
lows the estimation of the parameters during the inertia parameter iden-
tification. The model, in which the Coulomb friction effect has disap-
peared, has exactly the same number of model parameters as the com-
monly used Stribeck model of equation (3.5). Finally, the model has been
extended in such a way that it is able to predict the joint friction behaviour
in the pre-sliding regime during reversals of the joint velocity.



Chapter 4

Robot arm

4.1 Introduction

The modelling and identification of robotic manipulators has been widely
discussed in robotics literature, for instance the textbooks of Corke (1996),
Kozlowski (1998) and Khalil and Dombre (2002). For the modelling of the
robotic manipulator dynamics, there are mainly two formulations that
have been used in literature; the recursive Newton-Euler formulation and
the Lagrange formulation. The recursive Newton-Euler formulation (Luh
et al., 1980) is considered to be one of the most efficient algorithms for
real-time computation of the inverse dynamic model. Consequently, it
has been applied by many authors, e.g. Khosla (1989); Calafiore et al.
(2001); Khalil and Dombre (2002).

In this thesis a nonlinear finite element method (Jonker, 1990) is used
to formulate the dynamic equations of the robotic manipulator. In this
method, the equations of motion are derived by using Lagrange’s form of
Jourdain’s principle. This principle, a virtual power type approach, has
the advantage of automatic elimination of non-working joint constraint
forces and torques, but without the tedious calculation of partial differ-
entiation.

The spacar computer program, based on this finite element formula-
tion, has been developed (Jonker and Meijaard, 1990) for dynamic analy-
sis and simulation of mechanisms that can be assembled from basic com-
ponents, including beams, hinges, sliders, springs and dampers. The pro-
gram also allows analytic generation of locally linearised models around
a nominal trajectory (Jonker, 1988; Meijaard, 1991). Interfaces for con-
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trol system design with Matlab and Simulink have been developed by
Jonker and Aarts (1998). This allows the analysis of advanced control
schemes for application in mechanical systems. Recently, the finite ele-
ment formulation has been extended with a module for automatic gen-
eration of dynamic models suitable for dynamic parameter identification
(Hardeman et al., 2006b).

The problem that has to be addressed in order to obtain an accurate
dynamic robot model is to find the values of the model parameters. De-
termination of the parameter values from Computer Aided Design (CAD)
models may not yield a reliable and accurate representation because the
models are often insufficiently detailed; they may not include the actual
models of the servo motors, the servo wiring and/or the bearings. Fur-
thermore, obtaining the rotational inertias of the transmissions requires
a dynamic analysis which is generally not a feature that is included in
the CAD system. However, the functionality of modern CAD software is
constantly improving. Sophisticated parametric 3D solid modelling and
an increase in model details may give sufficiently accurate model param-
eters in the near future. The most efficient way to obtain accurate val-
ues of the unknown model parameters may be experimental parameter
identification using the assembled robot. The problem of obtaining the
dynamic model parameters by means of experimental identification has
been addressed by many authors. A general overview of experimental
robot identification using linear least squares techniques can be found in
the textbooks of Kozlowski (1998) and Khalil and Dombre (2002).

Outline

In this chapter, the modelling and identification of the inertia properties
of the robotic arm will be presented. First, in section 4.2, a finite element
representation of the robot arm will be given which will be used to derive
the dynamic robot model. In this thesis, the robot links and joints are con-
sidered to be sufficiently stiff in order to allow both the joints and links to
be modelled as rigid elements. The dynamic model of the robot is written
in both an acceleration linear and a parameter linear form. The first form
allows the model to be incorporated in closed-loop forward dynamic sim-
ulations, as will be presented in chapter 5. The latter form is derived in
order to apply linear regression techniques for the identification of the
unknown model parameters. In section 4.3, the identification of the un-
known parameters will be discussed. It starts with the formulation of
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Figure 4.1: Finite element model of the Stäubli RX90B robot arm.

a linear least squares problem. Subsequently, the least squares problem
will be analysed by means of singular value decomposition. The influ-
ence of errors will be discussed as well as the need for scaling. Finally,
section 4.4 deals with the actual identification experiments. In a series of
experiments, the unknown inertia parameters of the robot will be iden-
tified. The results are then validated with respect to the manufacturer’s
data and by means of validation experiments.

4.2 Finite element model of the robot arm

In the finite element formulation the manipulator mechanism is modelled
as an assembly of interconnected finite elements. The gravity compensa-
tion spring inside link 2 (figure 2.1) is modelled as a slider-truss element.
The manipulator links are modelled by beam elements. The joints are rep-
resented by six cylindrical hinge elements, which are actuated by torque
servos. The manipulator mechanism is assembled by allowing the ele-
ments to have nodal points in common. The finite element model of the
manipulator arm is depicted in figure 4.1.

The location of each element k is described relative to a fixed coordi-
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nate system (xyz) by a set of nodal coordinates x(k). Some coordinates
may be Cartesian coordinates of the end nodes, while others may be sets
of Euler parameters describing the orientation of orthogonal base vectors
or triads, rigidly attached to the element nodes.

The key point in the finite element formulation is the specification of
independent deformation modes for the description of the current state
of an element. If the specification of the deformation modes is invariant
for arbitrary large translations and rotations, then rigid body motions can
be analysed by setting all deformations equal to zero.

The element’s deformation modes are specified by a set of deforma-
tion mode coordinates e(k). These deformation mode coordinates may
either be associated with large relative displacements or rotations be-

tween the element nodes, denoted by e
(k)
i , or be associated with small

elastic deformations, in that case denoted by ε
(k)
i . The deformation mode

coordinates are expressed as analytical functions of the elements nodal
coordinates. These functions are known as deformation functions and
have a clear physical meaning. They are expressed as vector functions as

e(k) = D
(k)(x(k)) , (4.1)

or in component form as

e
(k)
i = D(k)

i (x(k)) , (4.2)

where the subscript i represents the deformation mode number. The
number of deformation modes is equal to the number of nodal coordi-
nates minus the number of degrees of freedom of the element as a rigid
body. In Appendix B, the description of the deformation functions for the
three finite elements that are used in the robot model—the slider truss,
the spatial hinge and the spatial beam—is given.

4.2.1 Kinematic analysis

A kinematic robot model can be assembled with the finite elements
by letting them have nodal points in common. In this way, a vector
x = (x1, x2, . . . , xnx) of nodal coordinates for the complete robot model is
defined. The subscript nx denotes the total number of nodal coordinates.
The vector of deformation modes e of the elements are then written as a
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vector function of the nodal coordinates:





e1
...

ene




 =






D1(x)
...

Dne(x)




 , or

e = D(x) , (4.3)

where the number of deformation mode coordinates is defined as ne.
Kinematic constraints are introduced by imposing conditions on both

nodal coordinates xi and deformation mode coordinates ei. The kine-
matic constraints on the nodal coordinates correspond to the fixed nodes
of the robot base and are denoted by x(0). For a rigid robot, the kine-
matic constraints on the deformation mode coordinates correspond with
the deformation modes of the beam elements and the bending modes
of the hinge element which have a prescribed value of zero and are de-
noted by e(0). The first deformation mode coordinates of the six hinge

elements, denoted by e(m) = (e
(m)
1 , e

(m)
2 , . . . , e

(m)
6 ), are taken as the degrees

of freedom. This leaves the deformation mode of the slider truss element
that models the gravity compensating spring, denoted by e(c), as the only
calculable deformation coordinate. The remaining nodal coordinates that
have to be computed are denoted by x(c).

The main objective of the kinematic analysis is to solve the system of
equation (4.3) for the generalised degrees of freedom e(m). The solution
is expressed as

x = F
(x)(e(m)) , (4.4a)

and

e(c) = F (e,c)(e(m)) , (4.4b)

where F
(x) and F (e,c) are known as the geometric transfer functions.

Generally, the geometric transfer functions cannot be calculated ex-
plicitly from equation (4.3) but they have to be determined numerically
in an iterative way (Jonker and Meijaard, 1990). For rigid robotic manipu-
lators that form an open kinematic chain of joints and links, it is possible
to determine the geometric transfer functions analytically, see e.g. Khalil
and Dombre (2002).
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The nodal velocities and the deformation rates are obtained by differ-
entiating equations (4.4) with respect to time:

ẋ = DF
(x)ė(m) , (4.5a)

ė(c) = DF
(e,c)ė(m) , (4.5b)

where the differentiation operator D represents the partial differentia-

tion with respect to the vector e(m). The matrices DF
(x) and DF

(e,c) are
known as the first order geometric transfer functions. Differentiating the
vector of nodal velocities again with respect to time yields the vector of
nodal accelerations

ẍ = (D2
F

(x)ė(m))ė(m) + DF
(x)ë(m) , (4.6)

where the tensor D2F
(x) is known as the second order geometric transfer

function.

4.2.2 Dynamic analysis

In a dynamic analysis, the forces and torques are related to the robot’s po-
sition, velocity and acceleration. Since the robot links are assumed to be
rigid, the inertia properties are described by means of lumped masses at
the nodes of the element. In this idealisation rigid bodies with equivalent
mass and rotational inertias are attached to the end-nodes of the element.
In this section, the equations of motion are derived in a form linear in
the acceleration and in a form linear in the inertial parameters. The lat-
ter requires a parameter linear mass formulation for the finite elements
constituting the manipulator mechanism.

Equations of motion in acceleration linear form

The equations of motion are formulated in terms of the degrees of free-
dom by means of the principle of virtual power (Jourdain’s principle)
and the first and second order geometric transfer functions. Let M be the
global mass matrix, obtained by assembling the mass matrices of the in-

dividual beam elements, and let f (x) be the global force vector including
the gravitational forces and the velocity dependent inertia forces (Jonker,
1988). Application of the principle of virtual power for the external forces,



4.2. Finite element model of the robot arm 71

including the inertial forces, and the vector of generalised stress resul-
tants σ(m) associated with the hinge elements and the internal force of
the compensating spring σ(c) yields

〈(
f (x) − Mẍ

)
, δẋ
〉

=
〈
σ(m), δė(m)

〉
+
〈
σ(c), δė(c)

〉
, (4.7)

for all virtual velocities δẋ and δė satisfying the instantaneous kinematic
constraints of equation (4.5). The operator 〈a, b〉 denotes the scalar prod-
uct of vectors a and b. Substitution of equations (4.5) into equation (4.7)

with the transpose transformations DF
(x)T and DF

(e,c)T yields

DF
(x)T
(

f (x) − Mẍ
)
− σ(m) − DF

(e,c)Tσ(c) = 0 . (4.8)

Substitution of equation (4.6) into equation (4.8) yields the equations
of motion in terms of the joint degrees of freedom q = e(m):

Mq̈ + DF
(x)T
[
M
(
(D2

F
(x)q̇)q̇

)
− f (x)]+ DF

(e,c)Tσ(c) = T , (4.9)

where M is the reduced mass matrix, defined as

M = DF
(x)TMDF

(x) , (4.10)

and the vector of generalised stress resultants σ(m) has been replaced by
the vector of joint torques

σ(m) = −T . (4.11)

The reversed sign is a result of different sign conventions for the driv-
ing torques in control engineering literature and in structural dynamics
literature.

Substitution of the joint torque of equation (2.5), page 21, into the
reduced equations of motion (4.9) yields after some rearranging

M
(N)

q̈ + DF
(x)T
[
M
(
(D2

F
(x)q̇)q̇

)
− f (x)]

+ DF (e,c)Tσ(c) − T
( f ) = T

(m) , (4.12)

where the combined mass matrix M
(N)

is defined as

M
(N)

= M + T TJ(m)T (4.13)

in which the matrix T TJ(m)T represents the servo’s rotor inertias. Fur-

thermore, the vector of motor torques T
(m) is computed from the vector

of servo motor currents according to equation (2.6), page 21.
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The constitutive equation for the gravity compensating spring is given
by

σ(c) = σ(c,0) + k(c)e(c) , (4.14)

where σ(c) is the internal stress of the spring, k(c) is the stiffness of the
spring and σ(c,0) denotes the pre-stress.

Equations of motion in parameter linear form

In the case of a lumped mass formulation, the equations of motion can
also be written in a parameter linear form. For a single beam element k
the equations of motion in a parameter linear form may be expressed as

Φ
(k,l)p(k,l) = f (k,p) , (4.15)

with the parameter vector

p(k,l) =






m(k)

m(k)s′(k)

l(k)




 . (4.16)

The matrix Φ
(k,l) is a kinematic function of the element’s nodal coordi-

nates, velocities and accelerations. The vector f (k,p) represents the exter-

nal nodal forces and torques acting on node p. The vector l(k) consists of
the upper triangle elements of the inertia matrix J′(k,p), which are

l(k,l) =
(

J
′(k,p)
xx , J

′(k,p)
yy , J

′(k,p)
zz , J

′(k,p)
xy , J

′(k,p)
xz , J

′(k,p)
yz

)
, (4.17)

where J′(k,p) and s′(k) denote the inertia matrix and the position vector of
the centre of gravity with constant components in reference to the body
fixed coordinate system (x′, y′, z′), see figure 4.2. For a detailed derivation
of the lumped mass formulation in the parameter linear form the reader
is referred to Hardeman et al. (2006b).

Let Φ
(l)(q̈, q̇, q) be the global system matrix obtained by assembling

the lumped matrices Φ
(k,l) and let p(l) be the associated parameter vector,

containing the lumped inertia parameters of the manipulator. Keeping in
mind that the term Φ

(l)p(l) includes all inertia and gravitational forces,
the principle of virtual power can be applied as follows:

〈
−Φ

(l)p(l), δẋ
〉

=
〈
σ(m), δė(m)

〉
+
〈
σ(c), δė(c)

〉
, (4.18)
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Figure 4.2: The lumped mass formulation of the spatial beam element.

which must hold true for all virtual velocities δẋ, δė(m) and δė(c) satisfying
the instantaneous kinematic constraints of equation (4.5).

Substitution of equations (4.5) and σ(m) = −T into equation (4.18),

yields, with the transpose transformations DF
(x)T and DF (e,c)T,

DF
(x)T

Φ
(l)p(l) + DF (e,c)Tσ(c) = T . (4.19)

The vector of inertia parameters p(l) is defined by

p(l) =
[

p(1,l) p(2,l) · · · p(6,l)
]T

, (4.20)

with for each link k = 1, 2, . . . , 6 the ten inertia parameters

p(k,l) =
[

m(k) ms
′(k)
x ms

′(k)
y ms

′(k)
z

J
′(k)
xx J

′(k)
yy J

′(k)
zz J

′(k)
xy J

′(k)
xz J

′(k)
yz

]

. (4.21)

The constitutive equation for the gravity compensating spring, de-
scribed by equation (4.14), will be reformulated as

σ(c) = Φ
(s)p(s) , (4.22)
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with

Φ
(s) =

[

1 e(c)
]

, (4.23a)

p(s) =

[

σ(c,0)

k(c)

]

. (4.23b)

The vector of joint driving torques T , as defined in equation (2.5),
page 21, can also be written in a parameter linear form

T = T
(m) − Φ

(m)p(m) − Φ
( f )p( f ) , (4.24)

where

Φ
(m) = T Tdiag(Tq̈) (4.25a)

and

p(m) = diag(J(m)) =
[

J
(m)
1 J

(m)
2 . . . J

(m)
6

]T
(4.25b)

is the vector of motor inertias.

The joint friction models, developed in chapter 3, contain five friction
parameters for each joint j. Furthermore, for each joint j, the friction

model includes two temperature dependent friction parameters T (a,BL)
j

and c
(v)
j which are linear in the friction model. The joint friction model is

a nonlinear function of the remaining three parameters δ
(a)
j , q̇

(s)
j and δ

(v)
j .

The latter are not temperature dependent and are therefore considered to
be constant. Expressing the friction model in the parameter linear form
yields the matrix

Φ
( f ) =














Φ
( f )
1 0 0 0 0 0 0

0 Φ
( f )
2 0 0 0 0 0

0 0 Φ
( f )
3 0 0 0 0

0 0 0 Φ
( f )
4 0 0 0

0 0 0 0 Φ
( f )
a 0 Φ

( f )
c

0 0 0 0 0 Φ
( f )
b Φ

( f )
c














(4.26)
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where

Φ
( f )
j = sign(q̇j)

[

e
−
∣
∣
∣q̇ j/q̇

(s)
j

∣
∣
∣

δ
(a)
j ∣

∣q̇j

∣
∣(1−δ

(v)
j )

]

, for j = 1 to 4 , (4.27a)

Φ
( f )
a = sign(q̇5)

[

e
−
∣
∣
∣q̇5/q̇

(s)
5

∣
∣
∣

δ
(a)
5

|q̇5|(1−δ
(v)
5 )

]

, (4.27b)

Φ
( f )
b = sign(q̇6)

[

e
−
∣
∣
∣q̇6/q̇

(s)
6

∣
∣
∣

δ
(a)
6

1 − e
−
∣
∣
∣q̇6/q̇

(l)
6

∣
∣
∣

]

, (4.27c)

Φ
( f )
c = sign(q̇7)

[

e
−
∣
∣
∣q̇7/q̇

(s)
7

∣
∣
∣

δ
(a)
7

|q̇7|(1−δ
(v)
7 )

]

. (4.27d)

Note that q̇7 = q̇5 + q̇6. The vector of friction parameters p( f ) is defined
as

p( f ) =
[

T (a,BL)
1 c

(v)
1 T (a,BL)

2 c
(v)
2 . . .

T (a,BL)
5 c

(v)
5 T (a,BL)

6 T (v,l)
6 T (a,BL)

7 c
(v)
7

]T
. (4.28)

Substitution of equations (4.22) and (4.24) into equation (4.19) yields
the equations of motion of the complete robot model in a parameter linear
form:

Φ(q̈, q̇, q)p = T
(m) , (4.29)

with

Φ(q̈, q̇, q) =
[

DF
(x)T

Φ
(l)

Φ
(m) DF (e,c)T

Φ
(s)

Φ
( f )
]

(4.30a)

and

p =
[

p(l) p(m) p(s) p( f )
]T

. (4.30b)

The total number of dynamic parameters in the vector p becomes 82; ten
inertia parameters for each of the six robot links, six motor inertias, two
spring parameters and fourteen temperature dependent friction parame-
ters.
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4.3 Experimental parameter identification

The robot identification techniques make use of the property that the
equations of motion can be formulated in a parameter linear form. The
first step in the experimental parameter identification involves measuring
the joint motion and torque data during the motion of the robot along an
optimised trajectory q(t). The data is recorded at a constant sample rate,
yielding a vector of measured robot joint torques which is denoted by

T̆
(m)

. The ·̆ indicates that measured values are considered.
In the second step, a linear system of equations with the 82 unknown

parameters in the parameter vector p is constructed by evaluating the
equations of motion and the recorded joint torques in n points along the
trajectory:

Ap = b + ρ , (4.31)

where A is known as the regression matrix, defined by

A =






Φ1(q1, q̇1, q̈1)
...

Φn(qn, q̇n, q̈n)




 , (4.32)

and the vector b contains the measured joint torques

b =







T̆
(m)
1
...

T̆
(m)
n







. (4.33)

The vector ρ is the vector of residual joint torques.
The third and final step is to find an estimation p̂ of the unknown

parameter values that minimises the residue between the simulated and
measured robot response. The property that the equations of motion can
be formulated in a parameter linear form allows the use of linear regres-
sion techniques, such as linear least squares. The estimate p̂ according to
the least squares solution is found by solving the minimisation problem

p̂ = arg min
p

‖ρ‖2
2 , (4.34)

where ‖ρ‖2 =
√

ρ2
1 + ρ2

2 + · · · + ρ2
n is known as the ℓ2−norm of vector ρ.
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4.3.1 The linear least squares problem

The linear least squares (LS) problem for the identification of the robot
model parameters is defined as a minimisation problem in which the
residue ρ between the simulated and measured robot response is min-
imised. The linear least squares problem, equation (4.34), can then be
stated as

p̂ = arg min
p

‖Ap − b‖2
2 , (4.35)

with p ∈ R
m, A ∈ R

6n×m and b ∈ R
6n. The number of unknown param-

eters in p is given by m and n denotes the number of points along the
identification trajectory in which the joint torques have been recorded.

The solution to equation (4.35) is found by setting the partial deriva-
tive of ‖Ap − b‖2

2 with respect to p equal to zero, which leads to the
so-called normal equations:

AT(Ap̂ − b) = 0 . (4.36)

Solving the normal equations yields an estimate p̂ of the unknown pa-
rameter vector. The mathematical solution of the normal equations can
be found as follows

ATAp̂ = ATb , (4.37)

leading to

p̂ = (ATA)−1ATb , (4.38)

provided that the inverse (ATA)−1 exist, which is only the case if the
regression matrix A has full rank. Obviously, the matrix A depends on
the excitation trajectory q(t).

To avoid loss of rank, the excitation trajectory has to be sufficiently
exciting and an adequate number of samples n along the trajectory has to
be taken into account. Even when that is accounted for, investigation of
the regression matrix A for the LS problem at hand reveals that it is rank
deficient:

rank(A) = r < m . (4.39)

As a consequence, solving the normal equations by means of the matrix
inverse (ATA)−1 is not possible.
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At the root of the rank deficiency of the regression matrix A is the
fact that not all parameters contribute to the joint torques. Even with an
excitation trajectory that is sufficiently exciting there are still some link in-
ertial parameters which do not contribute to joint torques. This is because

of the restricted motion near the robot base, e.g. the rotational inertias J
(1)
xx

and J
(1)
yy of link 1. The matrix column aj associated with such a parameter

pj has then an Euclidian norm equal to zero, ‖aj‖2 = 0. Furthermore,
there are some columns of the regression matrix that are linearly depen-
dent. This is caused by the fact that the associated parameters contribute
to the joint torques in a similar manner. For instance, the contribution of

the motor inertia J(m,1) of joint 1 and the rotational inertia J
(1)
zz of link 1

both depend only on the acceleration q̈1 of the first joint.

Several authors have addressed the problem of the rank deficiency of
the regression matrix, including Khosla and Kanade (1985) and Atkeson
et al. (1986). Methods based on a complete symbolic robot model have
been developed for serial link manipulators. They are either based on
the recursive Newton-Euler formulation (Gautier and Khalil, 1988) or on
the Lagrangian formulation (Mayeda et al., 1998). In these methods the
parameters that do not make any contribution to the joint torques are re-
moved from the parameter vector. The parameters associated with linear
dependent columns are gathered into single parameters. The definition of
a new parameter vector ensures a regression matrix which has full rank
under the condition that the trajectory is sufficiently exciting. Note that
these methods become quite cumbersome when a gravity compensating
spring, joint friction and motor inertias are added.

The more general techniques are the numerical methods, based on a
decomposition of the regression matrix (Gautier, 1990; Sheu and Walker,
1991; Antonelli et al., 1999). Decompositions such as the Singular Value
Decomposition (SVD) of matrix A are commonly used to analyse and
solve linear least squares problems with rank deficiency of the regression
matrix A, see Lawson and Hanson (1974); Golub and Van Loan (1983).
The application of the singular value decomposition in the dynamic iden-
tification has been demonstrated by An et al. (1988); Gautier (1990); Sheu
and Walker (1991); Shome et al. (1998); Khalil and Dombre (2002). In this
thesis, the singular value decomposition will also be employed to solve
and analyse the rank deficient least squares problem.
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Figure 4.3: The magnitude of the singular values σi(A), denoted by (•) compared
to the value of 10−8 of the precision at which the regression matrix was evaluated,
indicated by .

4.3.2 Solving the LS problem by singular value analysis

The singular value decomposition decomposes a matrix A ∈ R
6n×m into

the form

A = UΣVT , (4.40)

where U ∈ R
6n×6n and V ∈ R

m×m are orthogonal matrices, known as
the left and right singular matrices, respectively. When 6n > m, matrix
Σ ∈ R

6n×m is structured as follows

Σ =

[
S

0

]

, (4.41)

where S = diag(σ1, σ2, . . . , σm) contains the singular values σi of A on its
diagonal and where σ1 ≥ σ2 ≥ . . . ≥ σm ≥ 0. For a typical sufficiently
exciting trajectory and a sufficiently large number of samples n, the nu-
merically evaluated singular vales of the regression matrix of the least
squares problem at hand are shown in figure 4.3. As a threshold for zero
singular values the value 10−8 is used. This is the precision that is used
in the spacar software for the evaluation of the regression matrix A. It
is clear that only 55 singular values are nonzero. The other 27 singular
values can be considered zero. The number of nonzero singular values
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equals the rank r = rank(A) = 55 and as r < m the matrix A is rank defi-
cient. Accordingly, the diagonal matrix with the singular values S can be
split into a nonzero part S1 ∈ R

r×r and a zero part S2 ∈ R
(m−r)×(m−r) as

follows

S =

[
S1 0

0 S2

]

. (4.42)

The left and right singular matrices are partitioned in the same way, yield-
ing

U =
[
U1 U2

]
, (4.43)

V =
[
V1 V2

]
, (4.44)

where U1 ∈ R
6n×r, U2 ∈ R

6n×6n−r, V1 ∈ R
m×r and V2 ∈ R

m×m−r.
With the right singular matrix, the parameter vector p can be orthog-

onally transformed as follows

p = Vα (4.45)

and partitioning gives

p = V1α(E) + V2α(N) , (4.46)

where α(E) denotes the essential parameter vector, containing the 55 pa-
rameters that can be estimated independently. The vector α(N) is associ-
ated with the so-called null space:

0 = U2

[
S2

0

]

α(N) , (4.47)

for any vector α(N) as S2 is zero.
A similar orthogonal transformation can be carried out with the left

singular matrix U. Multiplication of both sides of equation (4.31) with the
transpose of U yields

UTρ = UTAp − UTb . (4.48)

Substitution of the singular value decomposition of A, equation (4.40),
gives

UTρ = UTUΣVT p − UTb . (4.49)
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Substitution of equation (4.45) gives

UTρ =

[
S

0

]

α − g , (4.50)

where the vector g is defined as

g = UTb . (4.51)

An important property of orthogonal matrices is the preservation of
Euclidian length upon multiplication. This implies that instead of min-
imising ‖ρ‖2

2 it is possible to minimise ‖UTρ‖2
2. Accordingly, the original

LS problem, equation (4.35), is replaced by

α̂ = arg min
α

∥
∥

[
S

0

]

α − g
∥
∥

2

2
. (4.52)

Since S is diagonal, the effect of each component of α on the residual
norm is immediately obvious. Introducing a component αi with the value

α̂i =
gi

σi
, (4.53)

reduces the sum of squares of the residuals ‖ρ‖2
2 by the amount of g2

i .
The solution of the transformed LS problem of equation (4.52) can now
be written as

α̂
(E)
i =

gi

σi
, for i = 1, 2, . . . , r , (4.54)

where obviously only the nonzero singular values are used. The residue
vector that remains is then given by

ρ =
6n

∑
i=r+1

uigi , (4.55)

where the vector ui denotes the ith column of the left singular matrix U.
Using equation (4.46), the estimate α̂ as obtained partly in equa-

tion (4.54) can be transformed to the estimate p̂ in the physical parameter
space according to

p̂ = V1α̂(E) + V2α̂(N) , (4.56)

which has an infinite number of solutions because it follows from equa-
tion (4.47) that α̂(N) can have any value α̂(N) ∈ R

m−r. Setting α̂(N) = 0
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yields an estimate for the essential parameter vector expressed in the
physical parameter space:

p̂(E) = V1α̂(E) . (4.57)

The fact that the null space α̂(N) may have any value in R
m−r without

affecting the joint torque, enables manipulation of the physical parameter
vector p̂. In general, the essential parameter vector does not yield param-
eter values that can be considered physically convincing. The null space
can then be used to obtain an equivalent solution p̂ which includes more
physically convincing parameter values.

In a situation where a priori knowledge of the parameter values is
available, e.g. an estimate from a CAD model, the values can be stored
in the vector p(F). Then it is possible to define the next minimisation
problem:

α̂(N) = arg min
α(N)

‖p̂ − p(F)‖2
2 , (4.58)

which leads to an estimate α̂(N) that minimises the difference between p̂
and p(F). Substitution of equation (4.56) into the normal equations which
solve the LS problem (4.58) yields

VT
2

(

V2α̂(N) −
(

p(F) − V1α̂(E)
))

= 0 , (4.59)

which have the solution

α̂(N) = VT
2 (p(F) − V1α̂(E)) . (4.60)

4.3.3 Error analysis of the LS problem

In order to study the sensitivity of the least squares solution p̂ to pertur-
bations on the elements of A and b the following system (Golub and Van
Loan, 1983) is considered

b + δb =
(
A + δA

)
p̂ , (4.61)

where the least squares solution is given by p̂ = p + δp. The perturbation
bounds on parameter errors are then given by

‖δp‖2

‖p‖2

≤ κ2(A)
‖δb‖2

‖b‖2

with δA = 0 (4.62)
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and
‖δp‖2

‖p + δp‖2

≤ κ2(A)
‖δA‖2

‖A‖2

with δb = 0 , (4.63)

where κ2(A) is known as the condition number. For rank deficient LS
problems and application of the ℓ2−norm, the condition number κ2(A)
equals the ratio between the largest σ1(A) and smallest nonzero singular
value σr(A):

κ2(A) =
σ1(A)

σr(A)
, (4.64)

where r = rank(A). As a consequence, small condition numbers are
desirable as the perturbations then have minimal influence on the overall
estimation error. Note that the errors δaij on A in equations (4.62) and
(4.63) must be of the same size (Gautier and Khalil, 1992). This requires
that matrix A must be normalised by means of column norm scaling, see
section 4.3.4, before the condition number is computed.

If perturbations δA on A become large, the use of the Maximum Like-
lihood Estimation (MLE) technique instead of linear least squares is more
appropriate (Swevers et al., 1996; Olsen and Petersen, 2001). Perturba-
tions on A are caused by stochastic measurement noise and systematic
errors—such as controller tracking errors—of the joint positions, veloci-
ties and accelerations. Olsen et al. (2002) states that the MLE is reduced to
a linear least squares problem if measurement noise on the joint positions,
velocities and accelerations can be neglected. In this thesis, matrix A is
computed using the reference values of the joint positions, velocities and
accelerations. Consequently, application of linear least squares is justified
as long as errors between the actual joint angles (and derivatives) and the
reference joint angles (and derivatives) are small. This will be verified in
section 4.4.1. It is expected, however, that on one hand the motion errors
will be small due to the fact that the robot has a high tracking accuracy
and on the other hand the measurement errors will be small because of
the joint motion data is directly taken from the digital servo amplifiers.

The sensitivity to perturbations can also be analysed by looking at
the influence of the variance of the estimation residual var(ρ) on the co-
variance matrix of the least squares estimates (Kozlowski, 1998; Antonelli
et al., 1999). The unbiased variance s2 of the estimation residual is defined
as

s2 = var(ρ) =
1

6n − r

6n

∑
i=1

ρ2
i , (4.65)
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where rank(A) = r is the number of estimated parameters. Note that it is
assumed that the contributions of the 6 joints have been properly scaled.
The variance var(α̂i) of a least squares estimate α̂i for a rank deficient
problem, r < m, can be written as

var(α̂i) =
s2

σ2
i

, (4.66)

where σi is the ith singular value. This expression shows that an error of
order O(s) in g will typically lead to an error in the estimate α̂ of the order
O(s/σ). It can be concluded that a large smallest singular value with
respect to the noise in the measurement vector g is preferred. However,
in many cases the signal-to-noise ratio is not sufficient enough to produce
an accurate estimate and the noise in the measurement vector g combined
with a small singular value will then lead to large errors in the parameter
vector.

A well known technique is the so-called truncated or partial SVD
method (Lawson and Hanson, 1974). While keeping in mind that the
singular values are sorted in descending order, it is possible to even fur-
ther reduce the number of singular values r that is taken into account
regarding the solution of the LS problem, expressed in equation (4.54),
so taking r < rank(A). Typically it is then a matter of finding a proper
number of singular values r that needs to be taken into account in such
a way that influence of noise in gr on a value for parameter α̂r is accept-
ably small. This can be accomplished by having the singular value σr that
is sufficiently large with respect to the noise level and verifying that the
contribution of g2

r+1 to the sum of squared residuals ‖ρ‖2
2 is sufficiently

small. In other words, if a value for r is taken too small it will lead to
large residues and erroneous model parameters and if a value for r is
taken too large it will lead to a so-called overfit; there is reduction of the
residue and the parameter values lose their physical meaning.

4.3.4 Scaling of the least squares problem

In the experimental identification problem at hand it is necessary to scale
the LS problem because the measurement vector b includes the measured
signals of six joints. In order to balance the range of these six signals,
scaling by means of left multiplication of A and b is needed. Furthermore,
scaling by means of right multiplication of A may be applied either to



4.3. Experimental parameter identification 85

balance the Euclidean norm of the regression matrix columns or to level
the numerical values of the parameters to be estimated.

Scaling by means of left multiplication of A and b

In order to include the six joints in an even way in the LS problem, a scal-
ing operation based on the maximum joint torque will be applied. This is
achieved by means of left multiplication of A and b by a diagonal matrix
L, which is actually a row-scaling operation. Application of the diagonal
scaling matrix L changes the minimisation problem of equation (4.35) into

p̂ = arg min
p

‖LAp − Lb‖2
2 , (4.67)

where L is defined as

L =






diag(T (max))−1 · · · 0
...

. . .
...

0 · · · diag(T (max))−1






6n×6n

. (4.68)

Vector T
(max) contains the six maximum joint torques. For the remainder

of this chapter, both the matrix A and the measurement vector b denote
the row-scaled versions, LA and Lb, respectively.

Scaling by means of right multiplication of A

Scaling of the LS problem by means of right multiplication is accom-
plished as follows

b = Ap + ρ , (4.69)

where

p = H−1p , (4.70)

A = AH . (4.71)

A technique that is often used to improve the numerical condition of
the regression matrix A is balancing the Euclidian norms of its columns.
A scaling matrix H(C) is then defined as a diagonal matrix with compo-
nents h(C) set as follows:

h
(C)
ii =

{

‖ai‖−1
2 if ‖ai‖2 6= 0

1 if ‖ai‖2 = 0
(4.72)
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where ai denotes the ith column vector of A.
This column scaling technique does indeed yield a better condition

number for matrix A. However, according to Lawson and Hanson (1974),
improving the condition number in this way may lead to unnecessary
and large estimation errors due to bad signal-to-noise ratios.

Taking an alternative approach in stead of scaling can be motivated
as follows. Without scaling, the covariance matrix of the least squares
estimate probes the absolute parameter error. Due to the fact that the
range in parameter values can be large—the parameter vector includes
inertia parameters, a stiffness and a pre-tension parameter, and also the
friction parameters—the parameters with large numerical values will be
estimated more accurately than parameters with small numerical values.
In order to have a parameter estimate with equal relative errors, scaling
based on parameter values has been proposed by Lawson and Hanson
(1974) and Kozlowski (1998). Consequently, a scaling matrix H(P) is cho-
sen to be a diagonal matrix with the diagonal components equal to the
expected values of p̂.

The components h
(P)
ij of the scaling matrix H(P) are then defined as

follows

h
(P)
ij =

{

p
(F)
i for i = j and i = 1, 2, . . . , m

0 for i 6= j .
, (4.73)

where p(F) include the a priori estimation of the inertia parameters that
was provided by Stäubli. Although these values are known to be incom-
plete, they should be sufficient for use regarding the normalisation. The
zero values in the first estimates p(F) are replaced by 10−3 in order to
prevent elimination of the associated dynamics. For the friction param-
eters in p(F) the values obtained in chapter 3 are taken as a logical first
estimate.

The result of scaling with the first estimates p(F) is that the values
of the estimates of the new parameter vector p will be close to 1 and as
a consequence the magnitude of a singular value σi will be close to the
value of gi. This allows for a direct comparison of the singular values
with the magnitude of the error in g, which will be used to determine
the number of singular values r that should be taken into account in the
truncated SVD method, see section 4.4. Furthermore, the singular value
σi gives a direct indication of the significance of the associated parameter
αi in the dynamics of the robot. Accordingly, the scaling with the a priori
estimation of the parameters will be employed in this thesis.



4.4. Identification experiments 87

4.4 Identification experiments

4.4.1 Experiment design

In experimental robot identification, the unknown model parameters are
estimated from the measured response during an identification experi-
ment. It is undisputed that reliable and accurate identification of the
model parameters requires specially designed experiments. When de-
signing an identification experiment it is essential that the trajectory is
sufficiently exciting so that an accurate estimation can be carried out re-
gardless of the presence of disturbances, such as measurement noise and
unmodelled dynamic behaviour. Furthermore, in order to prevent the ex-
citation of vibrations due to flexibilities, it will be desired to control the
frequency contents of the identification trajectory.

The problem of finding exciting trajectories for the identification has
been discussed in several publications. In general, the excitation trajec-
tory is parameterised and subsequently the trajectory parameters are ob-
tained by means of optimisation. First, the trajectory optimisation is dis-
cussed.

Excitation trajectory optimisation

An overview of different criteria that have been used for the optimisation
of the excitation trajectory has been given by Kozlowski (1998). A well
known optimisation criterion is the condition number κ2(A) of matrix A

(Gautier and Khalil, 1992; Swevers et al., 1997). This optimisation criterion
is a logical choice with respect to the error analysis given in the first part
of section 4.3.3. However, since the regression matrix needs to be scaled
on column norm, it contradicts with the need to scale on parameter val-
ues. Furthermore, the column norm ‖ai‖2 can be seen as the magnitude
of excitation of parameter pi. So it can be concluded that normalisation
of matrix A by scaling on column norm removes information regarding
the level of excitation of a certain parameter from the regression matrix.

An optimisation criterion which is based on the error analysis by
means of the parameter covariance matrix, see section 4.3.3, is then a
more logical choice. The analysis shows that a large smallest singular
value is desirable. Consequently, the trajectory optimisation problem can
be defined as

p̂(t) = arg min
p(t)

(
1

σr(A)

)

, (4.74)
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where p(t) is the vector of trajectory parameters and σr(A) is the smallest
nonzero singular value of the matrix A which has been scaled in such a
way that the parameter vector is normalised.

Excitation trajectory parametrisation

In the work that has been presented by Armstrong (1987) an optimal ac-
celeration sequence is determined and then the velocity and positions are
found by means of numerical integration. The drawback of this method
is the difficulty of including trajectory feasibility constraints in the opti-
misation procedure. Another method is based on the determination of
optimal joint position–velocity points, see Gautier and Khalil (1992) and
Antonelli et al. (1999). By means of a fixed order polynomial through
these points, a smooth interpolation function is obtained. A variation
on this method is the random search of position-velocity points for the
polynomial interpolation (Van der Linden and Van der Weiden, 1994).

In this thesis harmonic excitation trajectories, which have been inde-
pendently introduced by both Swevers et al. (1997) and Calafiore and
Indri (1998), are applied. Calafiore et al. (2001) stated that the applica-
tion of harmonic trajectories does yield a sub-optimal excitation trajectory.
However, harmonic excitation trajectories can be optimised in order to be
sufficiently exciting. The application of harmonic excitation trajectories
includes several advantages (Swevers et al., 1997):

• the possibility of time domain data averaging by measuring multi-
ple periods, which improves the signal-to-noise ratio of the experi-
mental data.

• the bandwidth of the excitation trajectories can be specified by
means of the basic pulsation in such a way that the excitation of
flexible modes can be prevented.

• the joint velocities and accelerations can be computed from the mea-
sured joint positions in an analytical way by means of Fourier trans-
formations. The periodicity of the excitation trajectory ensures that
the Fourier transform does not introduce leakage errors. Selecting
the main spectral lines in the Fourier transform and differentiation
in the frequency domain yields the time derivatives in a simple and
accurate way.
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The harmonic trajectories, i.e. finite Fourier series, are defined as:

qj(t) = q0j +
h

∑
i=1

aij sin(iω0t) + bij cos(iω0t) , (4.75a)

q̇j(t) =
h

∑
i=1

akjiω0 cos(iω0t) − bkjiω0 sin(iω0t) , (4.75b)

q̈j(t) =
h

∑
i=1

−akji
2ω2

0 sin(iω0t) − bkji
2ω2

0 cos(iω0t) , (4.75c)

where h is the number of harmonics and ω0 is the basic pulsation of the
trajectory. The trajectory is parameterised by means of the amplitudes
aij and bij of the sine and cosine functions and a joint angle off–set q0j

for each joint j. The trajectory parameters are collected in the parameter
vector

p(t) =
(
q01 . . . q06 a11 a12 . . . a6h b11 b12 . . . b6h

)
. (4.76)

Note that the optimisation problem in equation (4.74) is subject to con-
straints on the maximum joint positions, velocities and acceleration and
also subject to constraints on the position of the end-effector of the robot
in order to prevent damage to the robot due to collisions. The constraint
optimisation problem in equation (4.74) is nonlinear in its parameters,
which makes it quite cumbersome to solve. Calafiore et al. (2001) applied
a genetic algorithm in order to find the values of the trajectory parame-
ters. Another way of determining the trajectory parameters is by means
of trial and error: the trajectory parameters are chosen randomly and the
random set that yields the best optimum is then selected.

In this thesis, the Matlab (2004) fmincon nonlinear constraint optimi-
sation algorithm has been used to solve the problem in equation (4.74).
A typical optimisation run can take up to 12 hours until an optimum is
found while the motion constraints are being obeyed. Knowing that it
is almost inevitable that a local optimum will be found, the optimisation
has been computed several times, each time using different randomised

start values for the vector p
(t)
0 . The two trajectories with the smallest

optimisation criterium have been selected.
The basic trajectory pulsation ω0 is chosen as 1

4 π rad/s. The number
of harmonics h is 10, yielding a total of 126 unknown trajectory parame-
ters. With a sample time T = 0.04 s (25 Hz) and a period of 8 seconds, a
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Figure 4.4: The magnitude of the singular values of both the optimised trajectory
(+) and a trajectory with randomly chosen trajectory parameters (•).

total of 200 samples along the trajectory has been used for the trajectory
optimisation.

In figure 4.4 the singular values σr of the regression matrix belong-
ing to the optimised trajectory are compared to the singular values of
the regression matrix of the trajectory before optimisation. The figure
shows that the trajectory with the optimised parameters does not yield
significantly higher singular values than the trajectory with the randomly
chosen parameters. This will be elaborated upon in the next section.

As the robot controller needs set points at a sample rate of T = 0.004 s
(250 Hz), the actual trajectory for the robot has been recomputed at the
appropriate sample rate. In figures 4.5(a) and 4.5(c) the position and ve-
locity during one period of the optimised excitation trajectory for all six
axes have been plotted as a function of time. The actual joint positions and
velocities have been recorded and their difference with the designed tra-
jectory has been plotted as a function of time in figures 4.5(b) and 4.5(d).
Note that there may be a small synchronisation error due to the step-size
T = 0.004 s of the discrete time and the micro interpolator in the con-
troller. The trajectory error is in the range of 0.1%, which is considered to
be sufficiently small to use the designed trajectory for computing matrix
A and consequently it is assumed that δA ≈ 0.
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(a) The joint angles.
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(b) The joint angle errors.
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(c) The joint velocities.
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(d) The joint velocity errors.

Figure 4.5: One period of the optimised excitation trajectory as a function of
time. Figure (a) shows the joint angles, figure (b) shows the joint tracking errors.
The joint velocities along the trajectory have been plotted in figure (c) and the
velocity errors are depicted in figure (d). The six joints are denoted by q1,

q2, q3, q4, q5, q6.
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4.4.2 Identification of the Stäubli RX90B

The identification experiment was carried out on the Stäubli RX90B robot.
The start and end of the trajectory have been filtered in order to ensure
smooth motion and to reduce transients. In a single measurement, a total
of 4 periods are recorded of which only the second and third period are
used for the actual identification. The first and last period are disregarded
as they contain the filtered parts and transients may be present in the first
period. Before each measurement a warmup cycle was carried out in
order to equalise the experimental conditions.

The first identification experiment involves the Stäubli RX90B with-
out an additional payload attached. A total of 8 measurements are aver-
aged in order to reduce stochastic noise. However, unmodelled dynamics
caused by controller quantisation and drive nonlinearities are not reduced
by averaging and will be present in the measured joint torques.

The next step is to determine the number r of singular values that can
be estimated by means of the truncated SVD method. An effective way of
determining r is to plot the square of the Euclidean norm of the residual
vector ‖ρ‖2

2 as a function of the number r of singular values taken into
account, see figure 4.6. It appears that including more than about 20

parameters does not yield a significant improvement.

In order to investigate the influence of disturbances in the measured
joint torques on the estimated parameter uncertainty, the unbiased vari-
ance s2 of the estimation residual for an estimate with all 55 parameters
has been computed according to equation (4.65). From equation (4.66) it
follows that the error on the estimate α̂i equals the standard deviation s of
the estimation residual divided by the magnitude of the singular value of
σi as the parameters are scaled. Limiting the relative error in the estimate
α̂i to 10% implies that the value of σi needs to be larger than the tenfold
of the standard deviation s of the estimation residual. This 10% threshold
line is shown as the dashed line in figure 4.7 and from the graph it is
obvious that only about 22 parameters can be estimated accurately.

Note that it was observed from figure 4.4 that the trajectory optimi-
sation only improved the singular values in the range from 33 to 55.
Combining this with the fact that only 22 parameters can be estimated
accurately, it can be concluded that a trajectory optimisation has little to
no effect. Apparently, a random trajectory with an adequate number of
harmonics is already sufficiently exciting.

The vector of estimated parameter values p̂(E) is computed according
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Figure 4.6: The square of the Euclidean norm of the residual vector for a specific
estimate r, ‖ρr‖2

2, as a function of the number r of nonzero singular values that
have been taken into account in that specific estimate.
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Figure 4.7: The magnitude of the singular values is indicated by (•) and the con-
tinuous line ( ) denotes the absolute value of gi associated with the singular
value σi. The dashed line ( ) represents the tenfold of the standard deviation
of the estimation residual ρ. The vertical dotted line marks the number of sin-
gular values (r = 22) that has been taken into account in the final least squares
estimate. Note that the zero singular values, σ56...82, have not been plotted.
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Figure 4.8: Scaled values of the estimated essential parameters p̂(E) compared to
the factory parameters p(F), denoted by (•) and ( ), respectively. The values
have been scaled with the factory parameters p(F).

to equation (4.57). The values of the estimated parameters p̂(E) are dis-
played in figure 4.8. The factory parameters p(F) are displayed in the same
figure by the solid line; the value equals 1 for nonzero factory parameters,
otherwise it is zero. The graph shows clearly that the parameters p̂(E) do
not have true physical values.

Shaping the parameter vector towards the factory values by means of
the null space, as expressed in equations (4.58) to (4.60), yields a parame-
ter vector of an equivalent model with more realistic physical values. The
values are displayed and compared to the factory values in figure 4.9.

Although the estimated parameters do not need to be the exact phys-
ical values, they clearly indicate that the factory values for the motor and
transmission inertia, numbers 61 to 66, were underestimated. The val-
ues for the link inertias are in good agreement with the factory values
that were obtained from CAD data. Furthermore, as a result of different
temperatures, the viscous friction parameters have changed significantly
compared to the values obtained in chapter 3. This clearly demonstrates
the need to include the friction parameters in an inertia identification ex-
periment.

The model based on the identified parameter set p̂, which has been
estimated using 22 singular values, is referred to as model M1. In fig-
ure 4.10 the measured and simulated joint torques have been plotted. The



4.4. Identification experiments 95

1 11 21 31 41 51 61 69 82
−1.0

0.0

1.0

2.0

3.0

Parameter number i

V
al

u
e

Figure 4.9: Scaled values of the estimated parameters p̂ = p̂(E) + p̂(N) compared
to the factory parameters p(F), denoted by (•) and ( ), respectively. The values
have been scaled with the factory parameters p(F).

figures show that the residual torques are caused by (high frequency)
unmodelled dynamics. These unmodelled dynamics are caused by the
quantisation of the controller’s internal signals. Additionally, nonlineari-
ties in the robot transmission may also cause disturbances.

Figure 4.10(a) shows that there are some peaks present in the residual
torque. These peaks arise at points in the trajectory where a velocity
reversal occurs in the joint motion. At these velocity reversals, the friction
torque makes a jump from a negative friction torque to a positive torque
or vice versa, see chapter 3. Due to a small phase difference between the
actual velocity and the simulated velocity, peaks in the residual torque
may arise.

It is not expected that a more exciting trajectory will improve the
signal-to-noise ratio enough so that more parameters can be estimated.
This is motivated by the fact that increasing the level of excitation will
also increase disturbances due to nonlinearities. Furthermore, trajectory
tracking errors may arise. Therefore, an increase of the level of excitation
may also lead to an undesirable decrease of the signal-to-noise ratio.

With a model MF based on the factory parameters p(F) a simulation
has been carried out as well. For the values of the friction parameters,
the values from model M1 have been used. The results of the simulation
have been plotted in figure 4.11. It is clearly visible in the residual torques
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(a) Joint 1.
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(b) Joint 2.
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(c) Joint 3.
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(d) Joint 4.
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(e) Joint 5.
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(f) Joint 6.

Figure 4.10: The simulated and measured joint torques along the trajectory as
a function of time. The simulation has been carried out with model M1, with:

the measured torque, the simulated torque and the residual torque.
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that the joint torques of the lower joints (1 to 4) have been underestimated
as a result of the missing transmission inertias.

4.4.3 Validation of the identification experiments

Identification using a different excitation trajectory

The identification technique will be validated first by means of an iden-
tification that has been carried out using a second harmonic excitation
trajectory that has been obtained by a random selection of the trajectory
parameters while the trajectory constraints are met. Again, 22 singular
values have been used for this estimation. The operating temperature of
the robot during the identification differed slightly from the first iden-
tification experiment, which causes a change in the friction parameter
values. The robot model with the parameter values from this second
identification is referred to as model M2.

As in the first experiment, the regression matrix A has been decom-
posed by means of the singular value decomposition analysis. Verifica-
tion of the standard deviation of the estimation residual, the values of the
components of vector g and the magnitude of the singular values demon-
strates that for this trajectory 22 parameters can be estimated as well, with
a relative accuracy of ≈ 10 %. For this model, the null space has been
found by minimising the difference between the values of model M1 and
M2 as opposed to minimising the difference between the values of model
M1 and the factory values. In figure 4.12, the parameter values of model
M2 are compared to both the factory values and the parameters from
model M1. The figure shows that there is significant correspondence be-
tween both models. Investigation of the left singular matrix shows that
the physical parameters whose values differ the most appear to be asso-
ciated with the smallest singular values that were taken into account in
the estimation. To visualise this effect, a graphical representation of the
left singular matrix is shown in figure 4.13.

The graph clearly reveals that the physical parameters pi whose val-
ues differ the most, i = {15, 16, 23, 31, 35, 36, 61, 62, 63, 67} (as observed
in figure 4.12), are associated with the smaller singular values σj, where
j = {21, 22}. Figure 4.13 shows that these parameters pi are also associ-
ated with larger singular values. It indicates that linear combinations of
these parameters can be identified quite accurately, but that their mutual
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(a) Joint 1.
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(b) Joint 2.
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(c) Joint 3.
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(d) Joint 4.
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(e) Joint 5.
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(f) Joint 6.

Figure 4.11: The simulated and measured joint torques along the trajectory as a
function of time. The model is now based on the factory parameters MF, with:

the measured torque, the simulated torque and the residual torque.
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Figure 4.12: Scaled values of the parameters of the two models M1 (•) and M2

(×), estimated with different excitation trajectories. The line denotes the
factory values p(F). The values have been scaled with the factory parameters.
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Figure 4.13: Graphical representation of the left singular matrix VT for excita-
tion trajectory 2. The matrix shows how the physical parameters p are trans-
formed to components of vector α associated to the singular values. The white
squares correspond with elements vij ≥ 0.125 and black squares correspond with
matrix elements vij ≤ −0.125. The matrix elements −0.125 < vij < 0.125 are
displayed as grey boxes.
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(a) Joint 1.
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(b) Joint 2.
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(c) Joint 3.
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(d) Joint 4.
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(e) Joint 5.
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(f) Joint 6.

Figure 4.14: The simulated and measured joint torques along the trajectory as
a function of time. The simulation has been carried out with model M2, with:

the measured torque, the simulated torque and the residual torque.
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proportions cannot be determined accurately by means of experimental
identification.

Furthermore, the graphical representation of the left singular matrix
reveals that none of the inertia parameters associated with link 6 can be
identified. This is clearly a result of the fact that no payload has been
attached to the robot flange. The small mass of the wrist is clearly not
sufficiently exciting. Note that the rotor inertia of motor 6, parameter p66,
can be estimated independently as it is only associated with one higher
singular value σ9 which is not associated with any other parameter p.

Figure 4.13 also shows that nearly all the parameters pi, i =
{69, 71, 73, 75, 77, 81}, for the magnitude of the asperity friction T (a) can-
not be identified, as the singular values associated with these parameters

are too small. Only the value of the asperity friction T (a)
b for the roller

bearing in joint 6 can be estimated, parameter p79.
With model M2 a simulation of the joint torques for trajectory 1 has

been carried out. The results are shown in figure 4.14. Note that for
the values of the friction parameters the values from model M1 have
been used. The results show that there is again a good agreement be-
tween the measured and the simulated results, which was to be expected
as the model parameters of models M1 and M2 already were largely
equivalent. It can be concluded that accurate identification results can
be obtained from a different sufficiently exciting identification trajectory.
Furthermore, it proves that the obtained parameter values result in an
accurate general applicable dynamic robot model.

Identification of a second Stäubli RX90B

A second Stäubli RX90B, stationed at Stäubli Faverges, France, has been
identified using the excitation trajectory 2. The dynamic model obtained
is indicated by Mb. The estimation residual for a estimate with 22 pa-
rameters appeared to be slightly higher for this robot due to larger dis-
turbances on the torque of joint 4. As a result of these disturbances, which
were probably caused by controller dynamics, the estimation error asso-
ciated with the smallest singular value taken into account is a bit higher
than 10%. The estimated parameter values of models Mb and M2 are
compared to each other in figure 4.15. The values of the inertia parame-
ters related to the smaller singular values show some small differences.

The values of most viscous friction parameters are smaller for the
robot at the Stäubli factory in comparison with the robot at the University
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Figure 4.15: Scaled values of the estimated parameters (×) of the Stäubli RX90B
at Stäubli Faverges, France, compared to the estimated parameters (•) of the
Stäubli RX90B at the University of Twente. The line denotes the factory
values p(F). The values have been scaled with the factory parameters p(F).

of Twente. The difference in the friction parameters is mainly due to the
fact that the robot at the Stäubli factory had been running for significantly
more time than the robot at the University of Twente. The values for
the nonlinear friction model parameters have been chosen in order to be
identical to the values obtained for the robot at the University of Twente.

It is to be expected that the powers δ(a) and δ(v) are very much the
same for both robots, as they are mainly determined by the geometry of
the joints and transmissions. The parameter for the Stribeck velocity q̇(s)

will be somewhat different as it includes the standard deviation of the
height of surface summits σ(s), see section 3.3.2. The standard deviation
of the height of surface summits will most likely change as a function
of the time that the robot has been operating. In order to investigate this
assumption, a detailed analysis of the friction characteristics of the second
robot should be carried out. Fortunately, a change in the parameter for
the Stribeck velocity q̇(s) will not cause any problems for the identification
as the parameters for the asperity friction cannot be determined in this
identification experiment.
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Figure 4.16: The magnitude of the singular values (•) for the identification of the
robot with a payload and absolute value of gi ( ) associated with the singular
value σi. The dashed line ( ) represents the tenfold of the standard deviation of
the estimation residual ρ. The vertical dotted line marks the number of singular
values (r = 24) that has been taken into account.

4.4.4 Identification of the Stäubli RX90B with a payload

A dynamic model of the robot with a laser welding head as payload needs
to be obtained for the dynamic simulations that will be carried out in
chapter 5. The identification experiment with the robot and attached laser
head has been carried out using excitation trajectory 2 because trajectory
1 would have caused collisions.

A CAD model of the laser welding head was used to obtain a first esti-
mation of the inertia parameters. The mass of the welding head of 4.12 kg
was verified by weighing it on scales. This extra mass will increase the
amplitude of the joint torques. Furthermore, the singular values asso-
ciated with the LS problem will change as a result of scaling with the
adapted a priori estimation of the parameters.

Again, the number of singular values that can be taken into account in
the solution of the LS problem is determined by comparing their magni-
tudes to the standard deviation of the estimation residual, see figure 4.16.
It is now possible to estimate 24 singular values with sufficient accuracy,
as the increase in inertia also increased the signal-to-noise ratio of the
associated inertia parameters.
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The graph of the left singular matrix, depicted in figure 4.18, shows
that most inertia parameters p51...60 of link 6—that now includes the
payload—are associated with larger singular values and are now included
in the estimation.

The identified parameters are depicted for M3 in figure 4.17. The
identified values of the inertia parameters of the payload correspond well
with the values that were determined from the CAD data, e.g. the mass
for the payload found in the identification is 3.99 kg, which differs only
3% from the real mass. This difference can, on one hand, be caused by
identification errors or, on the other hand, it can be due to differences in
the values of motor constants between the model and the actual robot.

Figure 4.19 shows the measured and simulated joint torques for the
identification trajectory as a function of time. It is clear that the extra mass
has indeed increased the joint torques. It shows that the simulated val-
ues generally agree well with the measured values. Figure 4.19(e) shows
that there is a dissimilarity between the measured joint torque and the
simulated joint torque in joint 5, clearly noticeable at t = 2.7s. The dis-
similarity is most likely caused by the fact that the asperity friction torque
in the worm-wheel gear pairs may depend on the load.

Despite the fact that the friction characteristics of the robot wrist are
not accurately described in this case, the parameter values that have been
identified appear to agree well with previously identified values.

4.5 Discussion

In this chapter, the modelling and identification of a six degree of freedom
Stäubli RX90B industrial robot has been presented. A nonlinear finite el-
ement method has been used to model the mechanical part of the robot.
The equations of motion have been written in a form linear in the acceler-
ations and in a form linear in the parameters. The latter form allows the
application of linear least squares estimation techniques.

In the second part of this chapter, the experimental parameter identi-
fication has been discussed. The linear least squares technique proved to
be very suitable for identification of the unknown parameters, provided
that the problem is properly scaled and that the influence of disturbances
is sufficiently analysed and managed.

A row scaling operation of the regression matrix is needed as the
identification experiment consists of measurements of six joint torques



4.5. Discussion 105

1 11 21 31 41 51 61 69 82
−1.0

0.0

1.0

2.0

3.0

4.0

Parameter number i

V
al

u
e

Figure 4.17: Scaled values of the parameters of model M3 (•). The line de-
notes the factory values p(F). The values have been scaled with the factory pa-
rameters.
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Figure 4.18: Graphical representation of the left singular matrix VT for exci-
tation trajectory 2 and payload. The white squares correspond with elements
vij ≥ 0.125 and black squares correspond with matrix elements vij ≤ −0.125.
The matrix elements −0.125 < vij < 0.125 are displayed as grey boxes.
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(a) Joint 1.
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(b) Joint 2.
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(c) Joint 3.
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(d) Joint 4.
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(e) Joint 5.
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(f) Joint 6.

Figure 4.19: The simulated and measured joint torques along the trajectory as a
function of time for the robot with a laser welding head as payload, with: the
measured torque, the simulated torque and the residual torque.
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with a different torque range. Furthermore, a large range in parameter
magnitudes gives rise to a column scaling operation. Using an a priori
estimation of the parameter values for the column scaling operation im-
proves the ability to analyse the influence of disturbances and it leads to
parameters with equal relative accuracy.

Having all 82 unknown parameters in the model yields a rank defi-
cient LS problem. An analysis of the least squares problem by means
of a singular value decomposition has been applied to solve the prob-
lem of rank deficiency. The singular value decomposition showed that
the 82 physical parameters can be transformed into 55 so-called essential
parameters. Theoretically, all the essential parameters can be estimated
when the measurements are both free of measurement noise and free of
unmodelled dynamics. The remaining 27 parameters span the null space
and have no influence on the rigid body dynamics. The estimation of the
parameters by means of the truncated SVD method shows that from the
original 55 essential parameters α(E) only approximately 22 parameters
can be identified in the presence of measurement noise and unmodelled
dynamics. Subsequently, estimates for the null space spanned by the re-
maining 27 + 33 = 60 parameters are obtained by means of minimising
the difference between the physical parameters p and an a priori estima-
tion of the factory parameters.

Application of random harmonic excitation trajectories generally
leads to sufficiently exciting trajectories provided that the level of excita-
tion is properly chosen. Optimisation of the excitation trajectories showed
only little improvement with respect to the magnitude of the lower sin-
gular values. Considering the signal-to-noise ratio of the identification
experiment, trajectory optimisation does not bring any advantages.

Validation of the experimental identification technique showed that
it is robust with regard to changes in the friction conditions as friction
is taken into account in the identification process. It can be concluded
that accurate identification results can be obtained from a different suf-
ficiently exciting identification trajectory. In addition, the equivalence
between models M1 and M2 proves that the obtained parameter values
result in an accurate dynamic robot model. Furthermore, an identifica-
tion performed on a second identical robot yielded parameter values that
agreed well with earlier identified parameters.

Additionally, an identification experiment has been carried out with
a laser welding head as a payload attached to the robot. The mass of the
payload was found to be within 3 % of the mass measured on scales. The
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obtained dynamic model will be used for the simulations carried out in
the following chapter.

It can be concluded that the modelling assumptions that were made
with the derivation of the robot model in chapter 2 are supported by the
results obtained both in chapter 3 and, to a certain extent, in this chapter
as well. It has been shown that the friction effects inside a joint can be
combined into a single joint friction model. The load independence of the
asperity friction proved to be valid only for joints 1 to 4. However, the
effect of load dependence of the friction models of the robot wrist did not
have a significant influence on the identification of the model parameters.

Finally, it is concluded that dynamic robot models based on inertia
parameters determined from CAD data will be sufficiently accurate, es-
pecially if the transmission inertias are properly included. The friction
model parameters can be obtained by means of identification experiments
that have been described in chapter 3.

With the presented finite element formulation and the identification
method, a dynamic robot model has been obtained which can be applied
in closedloop dynamic simulations to study the trajectory performance of
typical laser welding trajectories.



Chapter 5

Dynamic simulation

5.1 Introduction

This chapter deals with dynamic robot simulations. First, the models of
the robot subsystems that have been derived in the previous chapters,
are assembled into a complete model of the closed-loop robot system.
Then, a perturbation method will be introduced in order to make the
dynamic simulations more time efficient. Motion experiments will be
carried out with both the nonlinear and the perturbation models. The
simulation results are then validated by means of measurements done on
the actual robot while performing the motion experiments. Finally, the
applicability of realistic dynamic simulations for off-line programming
will be demonstrated by means of motion experiments regarding typical
laser welding trajectories.

5.2 Closed-loop dynamic robot model

The models of the robot subsystems, the manipulator arm, the digital mo-
tion controller and robot drives including joint friction are assembled into
a complete model of the closed-loop robot system, shown in figure 5.1.
The closed-loop simulations are carried out using the graphical user in-
terface and equation solvers of Simulink (2004).

The reference trajectory of the robot tip x(r), provided by a trajectory
generator, is the input of the simulation model. The inverse kinematics
block computes the associated joint angles ϕ(r). The six reference joint
angles are fed into the motion controller where they are compared to the
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Figure 5.1: Assembly of the closed-loop robot model.

actual joint positions. The motion controller, which consists of the six
SISO (Single Input Single Output) PID controllers, computes the motor
currents i that are sent to the servo motors. The effects of sampling and
quantisation by the AD and DA converters of the digital motion controller
are taken into account in the controller model.

The vector of motor currents i acts as input for the drive model where
joint torques including joint friction are computed. The friction block
allows selection of either kinematic or dynamic pre-sliding behaviour.
Note that the driving system shown in figure 5.1 differs slightly from the
driving system model which has been presented in figure 2.7, page 21;
the rotational inertia torques of the motor rotors are left out of the model
of the driving system as they are included in the dynamic model of the
robot arm.

The output of the driving system, the vector of net joint torques T
(N),

is the input of the robot arm. The equations of motion (4.12) of the robot
arm are evaluated in the spacar computer program. The spacar program
is implemented as a Simulink block by means of a so-called S-function
within Simulink (Jonker and Aarts, 1998). The S-function enables inter-
action with the Simulink equation solvers which are employed to carry
out the numerical integration required for solving the equations of mo-
tion. The output of the robot arm model block may be any of the internal
model variables, such as (derivatives of) nodal or deformation mode co-
ordinates or nodal forces and can be selected by the user. In the model at
hand, the outputs are the vector of joint positions q and velocities q̇ and
the vector x(E) with the position and orientation of the end-effector.

The nonlinear dynamic robot simulations will be carried out with the
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presented Simulink block scheme. In Simulink a variable time-step in-
tegration scheme has been selected that determines the integration time
steps based on the estimated simulation accuracy (Simulink, 2004). In
addition, the motion controller model works using discrete time steps;
the position loop and the velocity loop are running at 2 kHz and 4 kHz,
respectively. In Simulink this implies that the robot model is simulated
at time steps equal to 0.25 milliseconds or even at smaller time steps if
Simulink’s integrator requires it. Unfortunately, these small time steps
combined with the iterative way of computing the robot’s configura-
tion will lead to high computational loads. In order to overcome this
drawback, a perturbation scheme will be presented first. This perturba-
tion scheme has been successfully applied to simulate flexible manipula-
tors (Jonker and Aarts, 2001, 2002).

5.3 Application of a perturbation method

In the perturbation method, deviations from the nominal motion
(q0, q̇0, q̈0) due to joint friction and limitations of the control system are
modelled as first-order perturbations (δq, δq̇, δq̈) of the nominal motion,
so that the actual degrees of freedom q and its time derivatives are of the
form

q = q0 + δq , q̇ = q̇0 + δq̇ and q̈ = q̈0 + δq̈ , (5.1)

where the prefix δ denotes a perturbation and the subscript 0 refers to
the nominal trajectory. The vector of nodal coordinates x and its time
derivatives are also written as a first order perturbation

x = x0 + δx , ẋ = ẋ0 + δẋ and ẍ = ẍ0 + δẍ . (5.2)

Substitution of x = F
(x)(q) and disregarding second and higher order

terms results in the linear approximations

x = F
(x)
0 (q0) + DF

(x)
0 δq , (5.3a)

ẋ = DF
(x)
0 q̇0 + DF

(x)
0 δq̇ + (D2

F
(x)
0 q̇0)δq , (5.3b)

ẍ = (D2
F

(x)
0 q̇0)q̇0 + DF

(x)
0 q̈0 + DF

(x)
0 δq̈ +

2(D2
F

(x)
0 q̇0)δq̇ + (D2

F
(x)
0 q̈0 + D3

F
(x)
0 q̇0q̇0)δq . (5.3c)
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The general principle of the perturbation method is to solve the equa-
tions of motion in two (separate) stages; a preprocessing stage in which the
nominal motion is computed and analysed and a simulation stage in which
the perturbations on the nominal motion are computed.

The preprocessing stage analyses the nominal motion q0(ti) by an in-
verse dynamic computation at discrete time steps t = ti, (i = 0, 1, . . . , n)
using the nonlinear manipulator model of equation (4.12) in which the
degrees of freedom are prescribed as a function of time, yielding

M
(N)
0 q̈0 + DF

(x)T
0

[

M0

(
(D2

F
(x)
0 q̇0)q̇0

)
− f

(x)
0

]

+ DF
(e,c)
0 σ

(c)
0 = T

(N)
0 ,

(5.4)

where σ
(c)
0 is the internal force of the gravity compensating spring and

T
(N)
0 is the vector of nominal net joint torques. Obviously, the desired

nominal motion (q̈0, q̇0, q0) equals the reference motion (q̈(r), q̇(r), q(r)) of
the closed-loop system. The reference motion is computed from the ref-
erence trajectory x(r) using the inverse kinematic model.

In the simulation stage the perturbed motion δq(t) is computed using
a set of linear time-varying (ltv) equations of motion that have been ob-
tained by linearising the equations of motion around a number of the
points on the nominal trajectory. The linear time-varying equations of
motion for the perturbations of the degrees of freedom δq are

M
(N)
0 δq̈ + C0δq̇ + (K0 + N0 + G0)δq = δT (N), (5.5)

where M
(N)
0 is the reduced system mass matrix as in equation (4.13), C0 is

the velocity sensitivity matrix, K0 denotes the structural stiffness matrix,
N0 and G0 are the dynamic stiffening matrix and the geometric stiffening

matrix, respectively. The matrices M
(N)
0 , K0 and G0 are symmetric, but

C0 and N0 need not to be symmetrical. For a detailed description of the
derivation of these matrices the reader is referred to Jonker and Aarts
(2001). The matrices, computed at corresponding time steps, are stored
in files which allows them be read at the simulation stage.

Figure 5.2 shows the Simulink closed-loop robot model using the per-
turbation scheme. The block that contains the perturbation scheme is dis-
played in the detailed view with the ltv-block in the centre. Its input

δT (N) is computed according to

δT (N) = T
(N) − T

(N)
0 . (5.6)
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Figure 5.2: Closed-loop robot model using the perturbation scheme.

In the ltv-block the linear time-varying equations of motions, equa-
tion (5.5), are solved using a Simulink s-function which employs a
(time-varying) state-space framework. The perturbed output vector

(δx(E), δq, δq̇) is added to the vector (x
(E)
0 , q0, q̇0), yielding the actual out-

put (x(E), q, q̇).
In order to employ a state-space solver for the linear time-varying

equations of motions, they are rewritten in the following state-space rep-
resentation

ẋss = Assxss + Bssuss , (5.7a)

yss = Cssxss + 1
2(Gss · xss) · xss , (5.7b)

where uss, yss and xss are the input, output and state vectors, respectively,
and Ass, Bss and Css are the time-varying state-space matrices. The usual
state-space representation is supplemented with a second order term in
the output equation for yss which includes a time-varying tensor Gss that
will be explained below. First, the state and input vectors are defined as

xss =

[
δq
δq̇

]

, (5.8a)

uss = δT (N) . (5.8b)

The state-space matrices Ass and Bss are then computed from the matrices
in equation (5.5) using a straightforward procedure, yielding

Ass =

[
0 I

− M
(N)
0

−1
[K0 + N0 + G0] − M

(N)
0

−1
C0

]

(5.9)



114 Chapter 5. Dynamic simulation

and

Bss =

[
0

M
(N)
0

−1

]

. (5.10)

The output matrix Css depends on the output vector yss that is defined
by the user. It may consist of (first derivatives of) the degrees of freedom
δq present in xss or (first derivatives of) nodal coordinates δx that are
computed from xss using equations (5.3a) and (5.3b). Note that in this
particular case, the output yss is chosen to include the position of the

end-effector x(E), the joint position q and the joint velocity q̇. The latter
two are required for both the feedback controller and the friction model.

For kinematically highly nonlinear mechanisms and possibly large δq,
as is the case with the robotic manipulator at hand, the linear approxima-
tion of equation (5.3a) may be inaccurate and a second order expansion

δx = DF
(x)
0 δq + 1

2(D2
F

(x)
0 δq)δq (5.11)

is used instead of equation (5.3a). Combining equation (5.11) and (5.7)
the coordinates δx in yss are computed using

Css =
[

DF
(x)
0 0

]

, (5.12)

Gss =

[

D2F
(x)
0 0

0 0

]

. (5.13)

The time varying state-space system associated with the perturbed
motion is solved by Simulink at appropriate integration time steps. As

the values of T
(N)
0 , x

(E)
0 , the state-space matrices Ass, Bss, Css and the

tensor Gss have been computed in the preprocessing stage at a number
n of discrete time steps ti, (i = 0, 1, . . . , n), they need to be adequately
interpolated in order to prevent artificial excitation of the dynamic sys-
tem. For the state-space matrices, a linear interpolation scheme has been
applied that guarantees that the second order derivative δq̈ will be of a
continuous nature. To ensure a smooth reconstruction of the output vec-
tor x(E), a cubic interpolation scheme (Waiboer, 1999) has been applied

for x
(E)
0 . The interpolated values of T

(N)
0 are obtained by means of the

cubic interpolation scheme as well.
The application of the perturbation method is only allowed when the

final motion of the dynamic system is sufficiently close to the nominal
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motion. This requirement imposes two conditions on the simulations.
The first condition is that the number of points in which the linearised
equations of motions are computed must be sufficient with respect to
the nonlinear behaviour of the robot along the nominal motion; if the
robot’s arm configuration changes rapidly during a certain motion, more
linearisation points have to be included. The second condition is that the
control system must be able to keep the final robot motion close to the
nominal motion in order to assume validity for the linearised equations
of motion.

5.4 Simulation experiment

In this section, both the full nonlinear closed-loop simulation model and
the perturbation method will be verified by means of a dynamic simula-
tion of the robot with a laser welding head, attached at the robot tip and
moving along a reference trajectory. The motion experiment is illustrated
in figure 5.3. The reference trajectory is defined as a straight line in a hor-
izontal plane from point A to point B with a trapezoidal velocity profile
as shown in figure 5.4(a). During the acceleration phase, between 1.0 s
and 1.25 s, the velocity is increased to 100 mm/s according to a ramped
sine function, as shown in figure 5.4(b). The acceleration profile is shown
in figure 5.4(c). The orientation of the laser welding head remains aligned
with the coordinate system (x(t), y(t), z(t)) of the trajectory. The joint set-
points are computed with the inverse kinematic module of the spacar

software.

The linear motion of the laser welding head requires complex motion
of the robot joints as is shown in figures 5.4(d) to 5.4(f) where the joint an-
gles, the joint angle velocities and the joint angle accelerations have been
plotted as a function of time, respectively. Note the velocity reversal of
joints 2, 3 and 5 at about t = 5.25 s. During the motion experiment on the
robot the values of the joint torques, the actual joint positions and joint ve-
locities have been recorded at a sample rate of 250 Hz. Before the motion
experiment the robot is warmed up using the same warmup sequence
as was applied for the identification experiments. The warmup sequence
is required to obtain the same temperature of the drives during the mo-
tion experiment as was present during the identification procedure, since
the viscous friction properties strongly depend on the temperature of the
drives.
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A

B

x(t)

y(t)
z(t)

Figure 5.3: Motion experiment: the robot tip (the focal point of the laser beam)
moves along a straight line from A to B at a constant velocity with a smooth
acceleration and deceleration profile while keeping the orientation of the laser
welding head aligned with the coordinate system (x(t), y(t), z(t)) of the trajectory.

5.4.1 Simulation results obtained with the nonlinear robot
model

The closed-loop dynamic model is first validated by means of a dynamic
simulation of the presented motion experiment using the full nonlin-
ear model of the robot as was shown in figure 5.1. The simulation has
been carried out within Simulink using the variable time-step ode23t

(Simulink, 2004) integration scheme with the relative tolerance set to the
value of 10−3, whereas other settings were set to their “auto” defaults. The
ode23t integration scheme is described as a dedicated solver for moder-
ately stiff problems for which a solution is required without numerical
damping (Simulink, 2004). Due to the fact that the friction torque rapidly
reverses sign at a velocity reversal—which requires a smaller time scale of
the numerical integrator—the simulation problem at hand is moderately
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(a) Robot tip velocity at full time scale.
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(b) Detail of the robot tip velocity during
the acceleration phase.
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(c) Robot tip acceleration.
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(d) Joint angles.
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(e) Joint angle velocities.
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(f) Joint angle acceleration.

Figure 5.4: Motion profiles for the straight-line motion experiment. The six joints
are denoted by q1, q2, q3, q4, q5, q6.
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stiff and the ode23t integration scheme turned out to be a time-efficient
solver. Simulink’s default variable time-step integration scheme ode45

appeared to be incapable of managing the friction behaviour in the pre-
sliding regime at the velocity reversals and at small velocities near zero.
As noted in section 3.8, both the kinematic and the dynamic (LuGre)
pre-sliding models show similar behaviour with respect to the simulation
results. In the present simulation experiment the LuGre pre-sliding fric-
tion model has been used as it has been shown to be more time efficient
than the kinematic pre-sliding model of equation (3.69), page 58.

The results of the simulation with the closed-loop robot model are
validated by means of data that have been recorded on the robot while
performing the motion experiment. In figure 5.5, both the measured and
simulated joint position errors are shown. It is observed that there are
peaks in the joint position errors at the acceleration and deceleration
phases. Due to inaccurate feed forward torques and the limited band-
width of the controller, tracking errors arise during these high acceler-
ations and decelerations. The inaccurate feed forward is caused by the
fact that the feed forward is constant—remember figures 2.4, page 17 and
2.5, page 18—and does not adapt to the nonlinear behaviour of the robot
dynamics due to large configuration changes. Furthermore, the velocity
feed forward does not include the complex behaviour of the joint friction.
The controller bandwidth is, amongst other things, limited by the lowest
natural frequencies of the robot arm, which is about 10 Hz.

The joints that have a velocity reversal in their trajectory motion, joints
two, three and five, also show a peak in the joint position error near
t = 5.25 s. These peaks are caused by the rapid changes in the joint
friction torque from the maximum asperity friction torque T (a,BL) to the
minimum asperity friction torque −T (a,BL), or vice versa, at velocity re-
versals. Although joint six does not have a velocity reversal along the
trajectory, it shows a peak in the position error, see figure 5.5(f). This
peak is caused by joint five which has a velocity reversal at t = 5.25 s.
As there is a coupling in the driving system between joint five and joint
six, the velocity reversal of joint five has an effect on the position error of
joint six. The results show a clear agreement between the measurement
and the simulated prediction. Although the magnitudes of the peaks at
t = {1 s, 5.25 s, 11 s} in the simulation do not exactly correspond with the
magnitudes of the measurements, they are still in fairly close agreement
with one another.

A series of simulations that have been carried out revealed that the
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(f) Joint 6.

Figure 5.5: The simulated and measured joint angular position errors
along the straight line trajectory as a function of time.
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(a) Deviation in y-direction.
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(b) Deviation in z-direction.
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(c) Detail, y-direction.
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(d) Detail, z-direction.

Figure 5.6: The simulated and measured path tracking errors of the laser
welding head in the straight-line motion experiment.

height of the peaks in the joint position error is mainly determined by the
interaction between the LuGre pre-sliding behaviour of the joint friction
model and the controller performance; increasing the stiffness c(0) of the
LuGre pre-sliding behaviour will give rise to larger controller errors.

The most important quality to examine for the application of laser
welding is the tracking performance of the laser beam’s focal point.
Therefore, the lateral (y-direction) and vertical (z-direction) tracking er-
rors have been plotted as a function of time in figure 5.6. Note that the
measured and simulated path tracking errors have been determined as
a function of the measured and simulated joint positions, respectively.
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Again, the graphs show peaks at the acceleration and deceleration phases
of the trajectory. Also, there is a peak at the moment of the velocity re-
versals of joints two, three and five. Figures 5.6(a) and 5.6(c) show that
the simulated and the measured path tracking error correspond closely in
the y-direction. In the z-direction, as shown in figures 5.6(b) and 5.6(d),
the peak near t = 5.25 s, as computed by the simulation, deviates from
the measured path tracking error. Although the simulated and measured
tracking errors on joint level show a clear agreement, small discrepancies
lead to larger differences at the tip of the robot. Depending on the kine-
matic configuration of the robot, errors at joint level translate differently
to tracking errors at the robot tip. The results show that the agreement be-
tween the simulated prediction and the measurement is typically within
25 µm, which is well within the required range of accuracy.

During the experiment, the motor currents are recorded. In figure 5.7
the measured motor currents are compared with the simulated motor cur-
rents. The joint torques T (m) have been normalised with the maximum
joint torque T (max). The figures show that the simulated joint torques
match the measured joint torques quite well for the major part of the tra-
jectory. Only at the start and end of the trajectory, where the robot is
at a standstill, is there a disagreement between the simulated and mea-
sured joint torques. This disagreement is caused by the pre-sliding fric-
tion behaviour. In a zero velocity situation, the required controller torque
needed to keep the robot axis at its current position may be anywhere be-
tween −T (a,BL) and T (a,BL), depending on the moment of ‘sticking’ of the
pre-sliding friction. Any small difference between the actual pre-sliding
behaviour and the model then leads to differences in the steady state
torque.

Figures 5.7 show that the joint torques are only of the order of 10%
of the maximum joint torques, so the trajectory is not very demanding.
The major part of the joint torque is caused by joint friction. Torques
caused by acceleration and deceleration represent only a small portion of
the total joint torques. The joint torques in joint five and six show larger
differences between the simulated and the measurement joint torques.
One of the causes for these discrepancies is that the friction behaviour of
the worm-wheel gears are load dependent. Additionally, the worm-wheel
gears that drive joints five and six may become self-locking. This means
that the friction between the teeth gets higher than the load force from
the wheel. As a consequence, the servo motor ‘feels’ no static load from
the joint.
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Figure 5.7: The simulated and measured joint torques along the straight
line trajectory as a function of time.
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The simulation results show that the closed-loop dynamic robot
model is sufficiently accurate to be used to predict the path tracking accu-
racy of the robot since the differences between simulation and measure-
ment are within the accuracy range that is required for laser welding. The
required CPU time needed for the simulation of the 12 second trajectory
was approximately 60 minutes when carried out on a Pentium-IV 2.4 GHz
PC. This is caused by the small time steps in which the manipulator con-
figuration needs to be solved by an iterative method. To overcome this
drawback, the perturbation method will be applied next.

5.4.2 Simulation results obtained with the perturbation method

For the simulations discussed in this section, the block-scheme of the full
nonlinear model, figure 5.1, is replaced by the block-scheme of the per-
turbation method, figure 5.2. For the perturbation method the number
of points along the trajectory n at which the system is linearised is cho-
sen to be 300. The simulation results of the perturbation method and the
nonlinear simulation have been compared. Figure 5.8 shows the differ-
ence between the simulated path tracking errors using the perturbation
method and the nonlinear method of figure 5.6. There is no noticeable
difference between the results at this scale. The difference stays well be-
low 10 µm and is mostly less than 2 µm, which is small compared to the
overall accuracy of the simulations (figure 5.6).

The simulated motor currents for both the nonlinear simulation and
the perturbation are plotted for joints 1 and 6 in figure 5.9. It shows that
the differences in joint torque are very small, mostly within 0.1% of the
maximum joint torque. The larger differences in joint torque appear at
the parts of the trajectory where the joints are at rest. This illustrates the
high sensitivity of the pre-sliding model to small differences in the joint
positions and velocities.

The application of the perturbation method appears to reduce the sim-
ulation time significantly; the simulation time that was achieved equals
60 seconds, which is 5 times real-time. The simulation times that have
been achieved by the perturbation method are sufficiently short to apply
realistic dynamic simulations in off-line programming software. Further-
more, the simulations have shown to be sufficiently accurate to be used in
predicting the path tracking accuracy. In order to demonstrate the appli-
cability of realistic dynamic simulations for off-line programming, several
typical welding trajectories are evaluated in the next section.
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Figure 5.8: The difference between the simulated path tracking errors using the
perturbation method and the nonlinear method of figure 5.6.
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Figure 5.9: The simulated joint torques for joint 1 and 6 using the perturbation
method, indicated by . The difference between the nonlinear simulation and
the perturbation method is indicated by . The results are similar for the other
joints.
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5.5 Off-line programming and dynamic simulations

The application of realistic dynamic simulations for the support of off-line
programming will be demonstrated on the basis of three typical weld
seams; the straight line, a 90◦ corner without change in orientation of
the welding head and a 90◦ corner with the orientation of the welding
head following the orientation of the seam. These trajectories will be
performed with increasing velocities, up to the point where the tracking
errors become too large for the laser welding application. The simulated
path tracking errors will be compared to the actual measured path track-
ing errors.

5.5.1 Straight line motion

The straight line motion experiment is repeated several times with an
increase in path velocity each time. The simulated path errors in y-
direction and z-direction are plotted as a function of the travelled distance
in figure 5.10. The figure shows that the path tracking error increases
with higher velocities. However, the maximum path tracking error stays
mostly within the limits of ±0.1 mm that are required by the laser welding
process. Only at the velocities of 300 mm/s and beyond is there a small
part along the trajectory of about 8 mm—starting at the velocity reversal
of joints 2, 3 and 5—where the tracking error is above 0.1 mm.

The orientation of the welding head is less critical in the laser weld-
ing process and the orientation errors may be of the order of several de-
grees. The observed errors in the orientation are very small and therefore
negligible. Additional simulation results can be found in Appendix C.1.
Figures C.2 and C.3 show the simulated and measured path tracking ac-
curacy at a welding velocity of 300 mm/s and 500 mm/s, respectively. At
these high velocities, the simulated path tracking errors deviate from the
measured path tracking errors. These deviations are caused by the fact
that the Stäubli RX90B robot has flexible joints which are excited by the
acceleration and deceleration phases and by the velocity reversal at about
400 mm. Figures C.4 and C.5 show that the measured and simulated joint
torques match reasonably well. The mismatches, which can be observed
as small offsets, are caused by differences in the viscous friction torques
and are a result of variations in the joint temperature.
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Figure 5.10: The simulated path tracking errors at different path velocities;
v = 100 mm/s, v = 200 mm/s, v = 300 mm/s, v = 400 mm/s,
v = 500 mm/s and denotes the maximum allowable tracking error.
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A

B C
x(t)y(t)

z(t)
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Figure 5.11: Motion experiment: the robot moves through a corner from A to B to
C at a constant velocity with a smooth acceleration and deceleration profile while
keeping the orientation of the laser welding head aligned with the coordinate
system (x(t), y(t), z(t)). The coordinate system is moving along the trajectory,
with the x-axis constantly pointing in the direction of the motion. The corner has
a radius r.

5.5.2 90◦ corner, the orientation of the welding head follows the
orientation of the seam

The next experiment involves the motion along a trajectory that includes
a 90◦ corner, while the laser welding head is following the orientation of
the welding seam, as illustrated in figure 5.11. This is a typical situation
when additional material is added to the weld by means of a wire feeding
unit that has to remain in a fixed orientation with respect to the welding
direction. The velocity profile is identical to the previous experiment.
The corner has a radius r = 100 mm, which is achieved by applying a
cubic spline interpolation between the start and the end of the curve. The
cubic spline interpolation closely approximates a circle segment, while it
ensures a smooth transition from the straight line part to the curved part
of the trajectory and vice versa.
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The joint angles, velocities and accelerations are computed using the
inverse kinematic robot model. Figure C.7 in Appendix C.2 shows that
the joint motion is quite complex, especially at the corner. All six joints
incorporate two or more velocity reversals during the corner motion. The
required joint accelerations are quite high which gives rise to large joint
torques, see Appendix C.2, figure C.9.

Figures 5.12(a) and 5.12(b) show the simulated and measured path
tracking accuracy. Note that even for a large radius of 100 mm the track-
ing error is already just above the threshold of 0.1 mm for some parts of
the trajectory. The prediction of the simulation agrees quite well with the
measurement on the robot, except for the part in between 320–370 mm.
This is caused by the fact that the position errors of joints 5 and 6 are
not predicted as accurately as the position errors of joints 1 to 4, see Ap-
pendix C.2, figure C.8.

In the next sequence, the corner radius is reduced while the tracking
velocity is kept at 100 mm/s. The simulation shows that the path tracking
error increases, as is to be expected. At the radius of r = 50 mm the
joint position error of joint 4 reaches its maximum allowed value and an
error is generated by the robot controller which results in an emergency
stop of the robot’s motion. In order to be able to perform the trajectory
with smaller radii, the welding speed needs to be reduced. Reducing the
velocity to 50 mm/s allows for a radius of 40 mm while the path tracking
error peaks only just outside the limits, see figures 5.12(c) and 5.12(d).

Again, the prediction of the simulation agrees well with the mea-
surement on the robot. The disagreement that is noted in the interval
320–370 mm is caused, once again, by the fact that the position errors of
joints 5 and 6 were not predicted as accurately as the position errors of
joints 1 to 4, see Appendix C.2, figure C.10. It is suspected that the self-
locking properties of the worm–wheel gears and the load dependency of
the asperity friction caused the mismatch. Figures C.10 and C.11 in Ap-
pendix C.2 show that there is a disagreement in the joint torques of joints
5 and 6 inside the robot wrist. For the first four joints, however, the joint
torques are predicted quite accurately.

The experiments show that keeping the orientation of the laser weld-
ing head aligned with the trajectory imposes high demands on the robot.
The minimum radius that can accurately be performed at 100 mm/s is
about 100 mm. If smaller radii are required, the welding velocity needs
to be reduced significantly.
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Figure 5.12: The simulated and measured path tracking errors of the
laser welding head in y-direction and in z-direction during the 90◦ corner motion
experiment where the welding head follows the orientation of the trajectory. In
(a) and (b) the corner radius is 100 mm and the welding speed is 100 mm/s. In
(c) and (d) the corner radius is 40 mm and the welding speed is 50 mm/s. The
dashed line indicates the maximum allowable tracking error.
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A

B C
r

Figure 5.13: Motion experiment: the robot moves through a corner from A to
B to C at a constant velocity with a smooth acceleration and deceleration profile
while keeping a fixed orientation of the laser welding head with respect to the
global coordinate system.

5.5.3 90◦ corner, fixed welding head orientation

In this experiment, the welding head orientation is fixed with respect
to the robot base, as is illustrated in figure 5.13. The welding speed is
kept constant at 100 mm/s while the radius of the corner r is reduced
from 50 mm to 2.5 mm in several steps. The joint positions and the joint
velocities for a radius of r = 50 mm are plotted as a function of time in
figures C.13(a) and C.13(b), respectively. The figures show that there is
a velocity reversal of joints 2, 3 and 5 at about t = 3.9 s. Note that the
maximum velocity is one order lower than in figure C.7(b) in which the
welding head orientation follows the orientation of the seam.

In figure 5.14 the path tracking errors along the trajectory in the y-
direction and the z-direction, respectively, have been plotted. The figures
clearly show that the tracking error stays well within the ±0.1 mm toler-
ance for the major part of the trajectory. For all radii, there is a peak in the
path tracking error in both directions when the robot moves through the
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(a) r = 50 mm, y-direction
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(b) r = 50 mm, z-direction
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(c) r = 10 mm, y-direction
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(d) r = 10 mm, z-direction
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(e) r = 2.5 mm, y-direction
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(f) r = 2.5 mm, z-direction

Figure 5.14: The simulated and measured path tracking error of the
laser welding head during the 90◦ corner motion experiment at a welding speed
of 100 mm/s. The dashed line indicates the maximum allowed tracking error.
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corner. The error in y-direction does not significantly increase when the
radius r is reduced and remains more or less within the limit of 0.1mm.
The tracking error in z-direction shows an increase from 0.2 mm to 0.3 mm
when the radius is decreased from 50 mm to 2.5 mm. Although the toler-
ances of the laser welding process are a bit less strict for the z-direction
(focus), the welding quality will be less in the corner for the 2.5 mm ra-
dius.

The simulation results agree well with the measurements. In Ap-
pendix C.3, in figures C.14 to C.15, the measured and simulated joint
torques for the experiments with r = 50 mm, r = 10 mm, r = 5 mm and
r = 2.5 mm are plotted and they demonstrate good agreement as well.

5.6 Discussion

In this chapter the closed-loop model of the Stäubli RX90B robot has been
assembled. A perturbation method has been introduced in order to re-
duce the simulation time. Simulations of a straight line motion have been
carried out to validate both the identified nonlinear robot model and the
perturbation method.

The simulation results agree well with measurements that were car-
ried out on the robot, leading to the conclusion that the robot model is
adequate and that the model parameters have been identified consistently.
However, at some parts of the trajectory somewhat larger differences be-
tween the simulation and the measurements occur.

The main disagreements that have been observed are caused by joint
friction. First, due to different temperatures of the drives during the
identification of the friction model parameters and during the motion
experiments, the magnitude of the viscous friction torques may be differ-
ent. This results in a difference between the magnitude of the simulated
and measured joint torques. The impact of this difference on the track-
ing accuracy is negligible as the controller’s integrating action is able to
compensate for this low-frequency effect. Secondly, the pre-sliding joint
friction model is not able to model the pre-sliding friction behaviour of
the joints precisely. This model error manifests itself during velocity re-
versals of the joint, causing disagreements between the measured and
simulated tracking errors. Furthermore, it causes differences between the
simulated and measured joint torques during standstill. Additionally, the
unmodelled load dependent friction behaviour of joints five and six leads
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to differences between the simulated and measured joint torques. Finally,
the self-locking nature of the worm wheel and gear is not included in the
robot model, which means that static loads on the joints of the robot wrist
are not transmitted to the servo motors.

The application of dynamic simulations in off-line programming has
been demonstrated by means of three typical welding trajectories: the
straight line motion, a 90◦ corner with the laser welding head following
the orientation of the welding seam and a 90◦ corner with a constant ori-
entation of the laser welding head. It was shown that it is possible to a pri-
ori detect path tracking errors on the basis of joint data which are caused
by trajectories that are too demanding for the robot. Consequently, the
simulations have demonstrated that the prediction of the path tracking er-
rors is sufficiently accurate for use in off-line programming for robotised
laser welding.
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Chapter 6

Conclusions & Discussion

6.1 Conclusions

In this thesis, the dynamic modelling, identification and simulation of
a Stäubli RX90B industrial robot for off-line programming of robotised
laser welding has been presented. First, the modelling of the main com-
ponents, the robot arm, the driving system including friction and the
robot controller have been discussed in detail. The key in accurate dy-
namic simulations lies in the availability of a model structure with a set
of dynamic equations that model the relevant physical phenomena of the
actual robot correctly. Such a model structure is a prerequisite for consis-
tent identification of the model parameters by performing experimental
identification techniques. The robot model has been validated by means
of several motion experiments. Finally, the applicability of dynamic sim-
ulations in off-line programming has been demonstrated for three typical
welding jobs.

From the work presented in this thesis the following general conclu-
sions can be drawn:

• Assuming an ideal transmission in which the friction torques of
the gears and bearings inside a joint are lumped into a single joint
friction torque is sufficient for application in a rigid model for the
Stäubli RX90 robot.

• Phenomenological friction models, commonly used in control liter-
ature, are inadequate to model the viscous friction behaviour of
the robot transmission for the full velocity range with sufficient
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accuracy. A new joint friction model has been developed that re-
lies on insights from sophisticated tribological models. The friction
model accurately describes friction behaviour in the full velocity
range with a minimal and physically sound parametrisation.

• A nonlinear six degree of freedom finite element model of the
Stäubli RX90B industrial robot has been built. The application of
the finite element model allows the model to be extended into a
model that includes joint flexibility for future research. The pre-
sented parametrisation for the lumped mass description of the beam
element allows for a robot model with equations of motion that are
linear in the inertia parameters. Furthermore, the constitutive equa-
tion of the gravity compensating spring has been rewritten in a pa-
rameter linear form. The equations of motion have been extended
with the friction models which were rewritten in such a way that
they are linear in the temperature dependent parameters. Finally,
the inertia properties of the servo motors were also added to the
equations of motion in a parameter linear way.

• The linear least squares estimation technique is very suitable for the
identification of the unknown model parameters. Analysis of the
least squares problem by means of a singular value decomposition
enables a careful selection of the number of parameters that can be
estimated in the presence of measurement noise and unmodelled
dynamics.

• A closed-loop model of the Stäubli RX90B robot has been assem-
bled. A perturbation method has been introduced in order to reduce
the simulation time. Simulations of straight line motion have been
carried out to validate both the nonlinear robot model and the per-
turbation method. The simulation results have been shown to agree
well with measurements that have been carried out on the robot.
This leads to the conclusion that the model structure and the set of
dynamic equations describe the relevant physical phenomena of the
robot correctly and that the model parameters have been identified
consistently.

• The main disagreements between measurements and simulations
that have been observed are caused by joint friction. Three main
causes can be indicated. First, due to temperature variations in the
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drives the magnitude of the viscous friction torques will vary. Sec-
ondly, the joint friction model is not equipped to describe the pre-
sliding friction behaviour of the joints precisely. As a result, errors
arise in the simulated joint positions during velocity reversals. Fur-
thermore, this causes differences between the simulated and mea-
sured joint torques during standstill. Finally, the unmodelled load
dependent and self-locking friction behaviour of joints five and six
leads to differences between the simulated and measured torques
for these joints.

• The simulations have shown that the prediction of the path track-
ing errors is sufficiently accurate for use in off-line programming
for laser welding. The application of dynamic simulations in off-
line programming has been demonstrated by means of three typical
welding trajectories: the straight line motion, a 90◦ corner with the
laser welding head following the orientation of the welding seam
and a 90◦ corner with a constant orientation of the laser welding
head. It has been shown that it is possible to a priori detect path
tracking errors as a result of trajectories that are too demanding for
the robot.

6.2 Discussion and suggestions for future research

Joint friction is the root cause for many difficulties that were encountered
during the research presented in this thesis. In order to increase the ac-
curacy of both the dynamic simulations and the parameter identification,
further research on joint friction is recommended. In particular, the fric-
tion behaviour of the robot wrist and the worm wheel and gear will need
more attention. Additionally, the pre-sliding behaviour during velocity
reversals should be modelled more precisely.

The robot model presented in this thesis did not include drive non-
linearities and flexibilities. Furthermore, the path tracking performance
of the robot was based on the joint motion of the robot with an ideal
kinematic description. In reality, the path tracking accuracy of the robot
is compromised by joint flexibilities, kinematic errors, drive nonlinear-
ities and disturbance forces from the motion of the optical fibre and
coolant/shielding gas hoses attached to the laser welding head. In fig-
ure 6.1, the actual path tracking errors that have been observed during
the straight line experiment of section 5.4 are shown. The path tracking
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Figure 6.1: The measured path tracking errors using a seam tracking sensor at
two different velocities; v = 100 mm/s and v = 500 mm/s. The line

denotes the maximum allowable tracking error.
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errors were measured with a seam tracking sensor mounted at the robot
tip. The figure shows the path tracking errors for two different velocities;
v = 100 mm/s and v = 500 mm/s.

The large and ‘slow’ path tracking errors are caused by kinematic de-
viations; the lengths of the links differ slightly from those used in the
kinematic model in the robot controller. This is due to fabrication toler-
ances and, more importantly, to temperature variations. Furthermore, the
gravitational load on the joint elasticity causes the robot arm to sag.

The more erratic path tracking errors are caused by drive nonlineari-
ties; imperfections in the dimensions and shape of the drive components
lead to non-constant gear ratios and, consequently, deviations in the kine-
matics. Either of these path tracking errors can be observed for both veloc-
ities. Joint elasticity is more excited at the welding velocity of 500 mm/s,
which is clearly noticeable at the start of the trajectory and at the point of
the velocity reversal of joints 2, 3 and 5, at about 420 mm.

The path measurement with the seam tracking sensor shows that ex-
tension of the robot model with drive nonlinearities and flexibilities is
desirable. However, the main limitations of the robot are already pre-
dicted by the rigid robot model as presented in this thesis. Furthermore,
several innovative techniques are being developed to compensate for re-
maining path tracking errors due to drive nonlinearities, kinematic errors
and to some extent flexibilities also. Some promising techniques are, for
instance:

• Application of seam tracking sensors and algorithms for robotised
laser welding (De Graaf et al., 2006).

• Application of iterative learning control for robotised laser welding
(Hakvoort et al., 2006).

• Application of scanning laser welding optics for robotised laser
welding (Hardeman et al., 2006a).

In order to utilise dynamic robot simulations to support off-line pro-
gramming software, it is recommended that the simulation software be-
comes available as a so-called plug-in in the OLP software. In this way
the graphical user interface of the OLP software can be used to visualise
the predicted path tracking accuracy directly on the graphical model of
the weld seam.
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Appendix A

Friction behaviour of a helical

gear pair

The kinematics associated with helical gear are quite complex. In order to
make a simplification, a two-dimensional analysis is made using a cross–
section of two helical gears in contact, see figure A.1. The goal of the

analysis is to derive expressions for both tangential velocities u
(t)
1 and u

(t)
2

as a functions of the angular velocity ω1 of the driving gear wheel. The
expressions are then used in the modelling of the friction torques arising
in the helical gear pair.

Because of the fact that the gear teeth have an involute shape, the point
of contact C travels along the contact line, from the start of the contact Cin

to the end of the contact Cout. In order for the gear teeth to stay in contact
along the contact line, the surface points of both gear teeth in the contact
point C must have the same velocity, consequently

u(n) = R
(b)
1 ω1 = R

(b)
2 ω2 , (A.1)

where R
(b)
1 and R

(b)
2 are the base circle radii. The base circle radii are

given by

R
(b)
1 = R

(p)
1 cos(α(p)) , (A.2a)

R
(b)
2 = R

(p)
2 cos(α(p)) , (A.2b)

where R
(p)
1 and R

(p)
2 are the pitch circles of the gear wheels and α(p) is the
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Figure A.1: Kinematics of the helical gear pair.
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pressure angle. From equation (A.1) follows the gear ratio

ω1

ω2
=

R
(b)
2

R
(b)
1

=
z2

z1
= n(g) , (A.3)

where z1 and z2 denote the number of teeth for each gear wheel.
In the contact point C, the velocities u1 and u2 of the gear teeth are

u1 = ω1R
(c)
1 = ω1

R
(p)
1 cos(α(p))

cos(α(p) + β1)
, (A.4a)

u2 = ω2R
(c)
2 = ω2

R
(p)
2 cos(α(p))

cos(α(p) + β2)
. (A.4b)

Using the uniformity of the angles, the expressions for the tangential

velocities u
(t)
1 and u

(t)
2 are expressed as

u
(t)
1 = sin(α(p) + β1)u1 = ω1R

(p)
1 cos(α(p)) tan(α(p) + β1) , (A.5a)

u
(t)
2 = sin(α(p) + β2)u2 = ω2R

(p)
2 cos(α(p)) tan(α(p) + β2) . (A.5b)

With the substitutions ω2R
(p)
2 = ω1R

(p)
1 and β2 = −n(g)β1, the expres-

sions for the sum and sliding velocities become

u(+) = ω1R
(p)
1 cos(α(p))

(

tan(α(p) + β1) + tan(α(p) − n(g)β1)
)

, (A.6a)

u(−) = ω1R
(p)
1 cos(α(p))

(

tan(α(p) + β1) − tan(α(p) − n(g)β1)
)

. (A.6b)

For a typical pressure angle α(p) = 20◦ and a gear ratio n(g) ≈ 0.3, the
sum and sliding velocities have been plotted as a function of the angle of
rotation β1 during the full interconnecting phase of a single tooth, see fig-
ure A.2. It is clear from equations (A.6) that the expressions are nonlinear
functions of the angle of rotation β1. However, figure A.2 indicates that
both the sum and sliding velocity might be approximated by functions
that are linear in β1.

A first order Taylor series expansion in β1 of both velocities yields

u(+) = 2ω1R
(p)
1 sin(α(p)) + ω1R

(p)
1 β1

1 − n(g)

cos(α(p))
+ O(β2

1) , (A.7a)

u(−) = 0 + ω1R
(p)
1 β1

1 + n(g)

cos(α(p))
+ O(β2

1) . (A.7b)
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Figure A.2: The sum ( ) and sliding ( ) velocity factors, the slip factor ( )
and the average absolute slip factor ( ) as a function of β1. Multiplication of

the sum and sliding velocity factors with ω1R
(p)
1 yields the actual velocities.

The sum velocity u(+) is taken invariant for β1 and is approximated by its
zeroth order Taylor expansion

u(+) ≈ 2ω1R
(p)
1 sin(α(p)) , (A.8)

which leads to an error of ±10% on the sum velocity along the intercon-
nection phase for the gear ratio n(g) ≈ 0.3 at hand. The sliding velocity is
approximated by its first order Taylor expansion, yielding

u(−) ≈ ω1R
(p)
1 β1

1 + n(g)

cos(α(p))
. (A.9)

The first order Taylor approximation of the slip ratio s is

s ≈ β1(1 + n(g))

2 sin(α(p)) cos(α(p))
. (A.10)

Because the friction force is a dissipative force and the sliding velocity
is approximated as a linear function of the contact angle β1, an average
and positive slip ration s0 is considered for the full meshing phase of the
gear teeth. The average slip ratio is computed by taking the mean of the
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absolute value of β1. This then leads to the average absolute slip ratio s0,
given by

s0 =
β

(c)
1 (1 + n(g))

4 sin(α(p)) cos(α(p))
, (A.11)

where β
(c)
1 denotes the maximum contact angle during the meshing phase

and α(p) the pressure angle of the gear pair.
The friction force f ( f ) that is generated in the contact contributes to a

friction torque T ( f ) which is computed as

T ( f ) = R
(b)
1 f ( f ) . (A.12)
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Appendix B

Spatial finite elements

B.1 Spatial slider truss element

The position of the element is determined by two Cartesian position vec-
tors xp and xq of the end nodes p and q, respectively, see figure B.1. The
vector of nodal coordinates for the truss element is then

x(k) =

[
xp

xq

]

=
[
xp yp zp | xq yq zq

]T
. (B.1)

The number of rigid body degrees of freedom is five, as a rotation
around the p–q axis is not involved in the description of the element
position. With the six nodal coordinates, this leaves a single deformation
mode for the element. Naturally, the deformation mode is defined as the
element’s elongation and is expressed as a function of the instantaneous
values of the position coordinates xq and xp and the reference length. The

x

y

z

e
(k)
1

p

q

Figure B.1: The spatial slider truss element in a deformed state.
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deformation function is defined by

e
(k)
1 = D(k)

1 (x(k)) = l(k) − l
(k)
0 , (B.2)

where l
(k)
0 is the reference length of the element and l(k) is defined as

l(k) =
√

(xq − xp)T(xq − xp) , (B.3)

which is the actual length of the element.

B.2 Lambda element

Although the λ-element is not a real structural element, the way in which
it is used in the theory justifies its presentation as an element. According
to Euler, an arbitrary rotation can always be described as a rotation along
a certain axis nφ over a certain angle φ. The set of Euler parameters that
describes this rotation forms the unit quaternion

λ =

[
λ0

λφ

]

, (B.4)

which is defined as:

λ0 = cos

(
φ

2

)

, (B.5a)

λφ =





λ1

λ2

λ3



 = nφ sin

(
φ

2

)

. (B.5b)

Rotations described in terms of Euler parameters must satisfy the con-
straint equation

λ2
0 + λ2

1 + λ2
2 + λ2

3 = 1 or λTλ = 1 . (B.6)

Let the deformation function for the λ-element be defined as

e(λ) = D(k) = λTλ − 1 . (B.7)

In that case the constraint condition for the Euler parameters is of a sim-
ilar form as the un-deformability condition e(λ) = 0 for the λ-element.
For each set of Euler parameters used in the description, a λ-element
is added to the list of elements with the condition that the deformation
mode belonging to the λ-element is prescribed a value of zero.
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Figure B.2: Graphical representation of the spatial hinge element. The figure
shows a rotation φ around the main axis of the element.

B.3 Spatial hinge element

The spatial hinge element, illustrated in figure B.2, describes the relative
rotation between nodes p and q. The hinge element has been introduced
by Van der Werff and Jonker (1984). Later, Geradin et al. (1986) presented
the expressions for the deformations in their present form.

Using the Euler parameters, the vector of nodal coordinates for the
hinge element is expressed as

x(k) =

[
λp

λq

]

=
[
λ

p
0 λ

p
1 λ

p
2 λ

p
3 | λ

q
0 λ

q
1 λ

q
2 λ

q
3

]T
. (B.8)

The configuration of the hinge element is then given by the two sets of
Euler parameters λp and λq describing the orientation of the orthogonal
triads (n

p
x, n

p
y , n

p
z ) and (n

q
x, n

q
y, n

q
z) rigidly attached to nodes p and q. Note

that nodes p and q coincide and that their initial orientation is identical.
The relative rotation of the triad (n

q
x, n

q
y, n

q
z) rigidly attached to node q

with respect to the triad (n
p
x , n

p
y , n

p
z ) rigidly attached to node p is described

by the set of Euler parameters λr which is obtained from the quaternion
product (Geradin et al., 1986)

λp ◦ λr = λq , (B.9)
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where

λp ◦ λr = (λ
p
0 λr

0 − λ
p
φ · λr

φ , λ
p
0 λr

φ + λr
0λ

p
φ + λ

p
φ × λr

φ) . (B.10)

Multiplying both sides of equation (B.9) with the adjoint quaternion λ
p
,

which is defined as

λ
p

=

[
λ

p
0

−λ
p
φ

]

, (B.11)

yields the expression for the relative rotation r of node q with respect to
node p

λr = λ
p ◦ λq . (B.12)

This is a relative rotation expressed in the global reference frame. Usu-
ally, the initial orientation of the hinge is according to the local reference
frame (n

p
x , n

p
y , n

p
z ). Expressing the relative rotation λr in this local refer-

ence frame yields

λ′r = (λr
0, λr

φ · n
p
x , λr

φ · n
p
y , λr

φ · n
p
z ) . (B.13)

The hinge element has a total of eight nodal coordinates. The number
of degrees of freedom of the element as a rigid body is three and with two
constraint deformation modes for the Euler parameters (equation (B.7))
this leaves a total of three deformation modes. The deformation modes
of the hinge element are expressed as

relative rotation: e
(k)
1 = D(k)

1 (x(k)) = 2 arctan

(
λ′r

1

λ′r
0

)

, (B.14a)

bending: ε
(k)
2 = D(k)

2 (x(k)) = 2(λ′r
0λ′r

2 − λ′r
1λ′r

3) , (B.14b)

ε
(k)
3 = D(k)

3 (x(k)) = 2(λ′r
1λ′r

2 + λ′r
0λ′r

3) , (B.14c)

where e
(k)
1 refers to large relative rotations around the main axis and ε

(k)
2

and ε
(k)
3 to the bending deformations.

B.4 Spatial beam element

Figure B.3 shows a spatial beam element in an x-y-z inertial coordinate
system. The configuration of the beam element is determined by the
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Figure B.3: The spatial beam element in a deformed state.

position vectors xp and xq of the end nodes and the angular orientation of
the triads (Rpnx′ , Rpny′ , Rpnz′) and (Rqnx′ , Rqny′ , Rqnz′) rigidly attached
to the end nodes. In the undeformed state, the triads coincide with the
axis p–q and the principle axes of its cross section.

The nodal coordinates for the beam element are the two sets of Carte-
sian coordinates xp and xq and two sets of Euler parameters λp and λq at
the nodes p and q. Consequently, the vector of nodal coordinates for the
beam element is written as

x(k) =
[
xp yp zp λ

p
0 λ

p
1 λ

p
2 λ

p
3 xq yq zq λ

q
0 λ

q
1 λ

q
2 λ

q
3

]T
. (B.15)

The beam element has a total of fourteen nodal coordinates. The num-
ber of degrees of freedom of the element as a rigid body is six. With two
constraint deformation modes for the Euler parameters (equation (B.7)),
this leaves a total of six deformation modes. The deformation modes are
defined as (Jonker, 2002):

elongation: ε
(k)
1 = D(k)

1 (x(k)) = ‖l(k)‖ − l
(k)
0 , (B.16a)

torsion: ε
(k)
2 = D(k)

2 (x(k))

= 1
2 l

(k)
0 [(Rpnz′ , Rqnz′)−

(
Rpny′ , Rqny′

)
] , (B.16b)
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bending: ε
(k)
3 = D(k)

3 (x(k)) = −
(

Rpnz′ , l(k)
)

, (B.16c)

ε
(k)
4 = D(k)

4 (x(k)) =
(

Rqnz′ , l(k)
)

, (B.16d)

ε
(k)
5 = D(k)

5 (x(k)) =
(

Rpny′ , l(k)
)

, (B.16e)

ε
(k)
6 = D(k)

6 (x(k)) = −
(

Rqny′ , l(k)
)

, (B.16f)

where l
(k)
0 is the reference length of the element and the vector l(k) is

defined by

l(k) = xq − xp . (B.17)

The operator (a, b) denotes the inner product of vectors a and b. The
first deformation mode represents the element’s elongation. The second
deformation mode represents the torsion of the element. The third to
sixth deformation modes are associated with the bending of the element.



Appendix C

Simulation results

C.1 Straight line motion

A

B

x(t)

y(t)
z(t)

Figure C.1: Motion experiment: the robot tip (the focal point of the laser beam)
moves along a straight line from A to B at a constant velocity while keeping
the orientation of the laser welding head aligned with the coordinate system
(x(t), y(t), z(t)) of the trajectory.
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(a) Deviation in y-direction at 300 mm/s.
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(b) Deviation in z-direction at 300 mm/s.

Figure C.2: The simulated and measured path tracking errors of the laser
welding head in the straight line motion experiment at 300 mm/s.
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(a) Deviation in y-direction at 500 mm/s.
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(b) Deviation in z-direction at 500 mm/s.

Figure C.3: The simulated and measured path tracking errors of the
laser welding head in the straight line motion experiment at 500 mm/s. At these
high velocities, the simulated path tracking errors at the start and end of the
trajectory trajectory deviate somewhat from the measured ones. These are caused
by unmodelled behaviour, such as drive nonlinearities and flexibilities that are
excited by the acceleration and deceleration phases.
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(d) Joint 4.
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(e) Joint 5.
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Figure C.4: The simulated and measured joint torques along the straight
line trajectory at 300 mm/s as a function of time.
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(c) Joint 3.
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Figure C.5: The simulated and measured joint torques along the straight
line trajectory at 500 mm/s as a function of time.
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C.2 90◦ corner, welding head orientation follows the

seam

A

B C
x(t)y(t)

z(t)

r

Figure C.6: Motion experiment: the robot moves through a corner from A to B to
C at a constant velocity with a smooth acceleration and deceleration profile while
keeping the orientation of the laser welding head aligned with the coordinate
system (x(t), y(t), z(t)) of the trajectory. The corner has a radius r.
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(b) Joint angle velocities.
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(c) Joint angle accelerations.

Figure C.7: Joint angles and velocity as a function of time in the corner motion
experiment with a welding speed of 100 mm/s and a radius r = 100 mm. Note
that all joints now have velocity reversals. The six joints are denoted by q1,

q2, q3, q4, q5, q6.
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(f) Joint 6.

Figure C.8: The simulated and measured joint angular position errors
along the corner trajectory at 100 mm/s with r = 100 mm as a function of the
travelled distance along the trajectory.
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(f) Joint 6.

Figure C.9: The simulated and measured joint torques along the corner
trajectory at 100 mm/s with r = 100 mm as a function of time.
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(f) Joint 6.

Figure C.10: The simulated and measured joint angular position errors
along the corner trajectory at 50 mm/s with r = 40 mm as a function of the
travelled distance along the trajectory.
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Figure C.11: The simulated and measured joint torques along the corner
trajectory at 50 mm/s with r = 40 mm as a function of time.
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C.3 90◦ corner, constant welding head orientation

A

B C
r

Figure C.12: Motion experiment: the robot moves through a corner from A to
B to C at a constant velocity with a smooth acceleration and deceleration profile
while keeping a fixed orientation of the laser welding head with respect to the
global coordinate system. The corner has a radius r.
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(b) Joint angle velocities.

0 1 2 3 4 5 6 7 8
−π

− 1
2 π

0

1
2 π

π

time [s]

ac
ce

le
ra

ti
o

n
[r

ad
/

s2
]

(c) Joint angle accelerations.

Figure C.13: Joint angles and velocity as a function of time in the corner motion
experiment. The corner radius is 50 mm and the welding speed is 100 mm/s.
Note that joints 2, 3 and 5 have a velocity reversal at about 3.9s. The six joints
are denoted by q1, q2, q3, q4, q5, q6.



166 Appendix C. Simulation results

0 1 2 3 4 5 6 7 8
−0.10

−0.05

0

0.05

0.10

0.15

time [s]

T
(m

) /
T

(m
a

x
)

(a) Joint 1.

0 1 2 3 4 5 6 7 8
−0.25

−0.20

−0.15

−0.10

−0.05

0

0.05

time [s]

T
(m

) /
T

(m
a

x
)

(b) Joint 2.

0 1 2 3 4 5 6 7 8
−0.15

−0.10

−0.05

0

0.05

0.10

time [s]

T
(m

) /
T

(m
a

x
)

(c) Joint 3.
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Figure C.14: The simulated and measured joint torques along the corner
trajectory at 100 mm/s with r = 50 mm as a function of time.
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Figure C.15: The simulated and measured joint torques along the corner
trajectory at 100 mm/s with r = 2.5 mm as a function of time.
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Summary

Robotised laser welding is an innovative joining technique which is in-
creasingly finding applications, especially in the automotive industry. In
order to reduce the time needed to prepare and program the laser welding
robot, off-line programming systems are used. The off-line programming
systems currently available only allow kinematic simulations of the robot
motion, which are insufficient for a proper a priori prediction of the abil-
ity to weld the seam as dynamic effects in the path tracking accuracy are
not taken into account. Combining off-line programming systems and
dynamic simulations of the robot motion makes it possible to predict the
path tracking errors in advance.

Dynamic simulations require accurate robot models. Furthermore, it
is desirable that the simulation is sufficiently time efficient to make the
off-line programming process effective and fast. This thesis discusses
the dynamic modelling, identification and simulation of a Stäubli RX90B
industrial robot to be used for off-line programming for robotised laser
welding.

In this thesis, a finite element formulation has been used for the mod-
elling of the robot arm. The model is extended with models of the
robot controller and the driving system, including joint friction caused by
bearings and gears. At first, phenomenological friction models from the
robotics literature were applied. These models included simple Coulomb
and viscous friction descriptions. Measurements have pointed out, how-
ever, that these models are insufficient to describe the friction behaviour
of the robot at the required level of accuracy.

Therefore, a new friction model has been formulated that relies on
insights from sophisticated tribological models. The friction model ac-
curately describes the friction behaviour in the full velocity range with a
minimal and physically sound parametrisation. The model has been ex-
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tended in such a way that it is able to predict the joint friction behaviour
in the pre-sliding regime during reversals of the joint velocity.

Accurate robot models require model parameters that are known with
sufficient accuracy. The model parameters have been found either from
information supplied by the manufacturer or by means of identification
techniques. For the modelling and identification of the robot controller
the information of the manufacturer has been used. The model parame-
ters associated with the inertia properties of the robot arm, the parameters
of the gravity compensating spring, the motor inertias and the friction
parameters have been found by means of experimental parameter identi-
fication.

Using linear least squares estimation techniques the unknown model
parameters have been acquired. The problem of parameter identifiabil-
ity in the presence of unmodelled dynamics and disturbances has been
solved using singular value decomposition. Furthermore, scaling tech-
niques have been applied in a way so that all parameters are estimated
with the same relative accuracy.

The robot model has been validated by means of closed-loop dy-
namic simulations. The simulated path tracking errors correspond well
with the measured path tracking errors. Furthermore, the measured joint
torques correspond with the simulated joint torques. In order to reduce
the amount of time needed for the dynamic simulations, a perturbation
method has been applied. In this perturbation method, deviations from
the nominal motion due to joint friction and limitations of the control
system are modelled as first-order perturbations of the nominal motion.

The application of dynamic simulations in off-line programming has
been demonstrated by means of three typical welding trajectories. It has
been shown that it is possible to a priori detect path tracking errors and to
identify trajectory configurations that are too demanding for the robot.



Samenvatting

Gerobotiseerd laserlassen is een innovatieve verbindingstechniek die, met
name in de automobielindustrie, steeds vaker wordt toegepast. Om de
omstel- en programmeertijden te verkorten en om op voorhand te kun-
nen bepalen of een bepaald product met laser gelast kan worden, wordt
er gebruik gemaakt van off-line programmeersystemen. Bestaande syste-
men omvatten slechts het kinematisch simuleren van een robotbeweging
hetgeen onvoldoende is om een goede voorspelling te doen over de la-
ser lasbaarheid. Het toevoegen van een dynamische simulatie van de
robotbeweging maakt het mogelijk om lasnaad-volgfouten op voorhand
te voorspellen. Het proces van het modelleren, identificeren en simuleren
van een Stäubli RX90B industriële robot ten bate van het off-line program-
meren voor gerobotiseerd laserlassen is in dit proefschrift beschreven.

Dynamische simulaties vereisen een nauwkeurig robotmodel. Ook is
het van belang dat de simulatietijd voldoende kort is. Om dit te reali-
seren is gebruik gemaakt van een eindige elementen modelleermethode
om de robotarm mee te modelleren. Dit model is verder uitgebreid met
modellen van de regelaar en van de aandrijving, inclusief wrijving van
de robotassen.

De lagers en de tandwieloverbrengingen in het aandrijfsysteem van
de robot veroorzaken wrijving. In eerste instantie zijn wrijvingsmodellen
uit de robotliteratuur gebruikt welke gebaseerd zijn op wrijvingsfeno-
menen, zoals Coulombse en viskeuzewrijving. Metingen hebben echter
uitgewezen dat deze wrijvingsmodellen het werkelijke wrijvingsgedrag
van de robot onvoldoende nauwkeurig beschrijven. Aangezien wrijving
een significante bijdrage levert aan de asmomenten tijdens het bewegen,
is een verbeterd wrijvingsmodel noodzakelijk.

Op basis van inzichten vanuit de tribologieliteratuur is een nieuw
wrijvingsmodel ontwikkeld dat de wrijving in het volledige snelheids-
regime beschrijft met een minimaal aantal modelparameters. Met dit
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wrijvingsmodel is een consistente schatting van de modelparameters mo-
gelijk. Het wrijvingsmodel is vervolgens uitgebreid met een beschrijving
die ook het gedrag beschrijft tijdens het omkeren van de bewegingsrich-
ting van de robotas.

Voor een nauwkeurig robotmodel is het noodzakelijk dat de model-
parameters met hoge precisie bekend zijn. Deze kunnen op een tweetal
manieren bekend zijn; enerzijds vanuit het ontwerp van de fabrikant van
de robot en anderzijds door middel van parameteridentificatie. De mo-
delstructuur en de modelparameters voor het model van de regelaar zijn
verkregen vanuit informatie van de fabrikant Stäubli. De modelparame-
ters gerelateerd aan de inertiaeigenschappen van de robotarm, de zwaar-
tekracht kompensatieveer, de rotortraagheden en de wrijvingsparameters
zijn verkregen door middel van experimentele parameteridentificatie.

De parameteridentificatie is uitgevoerd met behulp van een lineaire
kleinste kwadratenmethode. Het probleem van parameter identificeer-
baarheid onder invloed van niet-gemodelleerde dynamica en andere ver-
storingen is opgelost door gebruik te maken van een singuliere waarden
decompositie. Verder is het noodzakelijk om het lineaire kleinste kwadra-
ten probleem te schalen opdat alle parameters met een gelijke relatieve
nauwkeurigheid worden geschat.

Het robotmodel is gevalideerd aan de hand van gesloten-lus simula-
ties. De gesimuleerde lasnaad volgfouten komen goed overeen met de op
de robot gemeten volgfouten. Ook de gesimuleerde motorkoppels laten
grote gelijkheid zien met de metingen. Om de simulatietijd te verkorten
is een perturbatiemethode toegepast. Hierin worden de nominale, niet-
lineaire, beweging en de kleine variaties op de beweging als gevolg van
verstoringen apart uitgerekend. De variaties worden berekend door mid-
del van gelineariseerde bewegingsvergelijkingen wat een factor tien aan
reductie van de simulatietijd oplevert.

Simulaties van typische trajecten die voorkomen tijdens het laserlas-
sen geven aan dat het op voorhand bepalen van de lasbaarheid via off-line
programmeren in combinatie met dynamische simulaties zeer goed haal-
baar is.


